High Performance Electrospun PVdF-HFP/MMT Nanofibrous Composite Membrane Electrolyte for Li-Ion Capacitors

Article Preview

Abstract:

The electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/montmorillonite nanofibrous composite membranes (esCPMs) were prepared by electrospinning technique using a mixture of different amounts of montmorillonite (0, 3, 5, 7 and 10 wt%) into 16 wt% of PVDF-HFP polymer solution in 7:3 wt% of acetone and dimethylacetamide as the solvent. The effect of montmorillonite (MMT) on electrospun PVdF-HFP membrane has been studied by XRD, DSC, TGA and tensile strength analysis. It is found that electrospun PVDF-HFP/MMT nanofibrous composite membrane obtained using 5wt% MMT has a higher porosity, electrolyte uptake, ionic conductivity, electrochemical stability window and showed higher specific capacitance and good compatibility with electrode materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-15

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Tamilarasan, S. Ramaprabhu, Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte, Mater. Chem. Phys. 148 (2014) 48–56.

DOI: 10.1016/j.matchemphys.2014.07.010

Google Scholar

[2] S.A. Hashmi. G P Pandey, Yogesh Kumar, Ionic liquid incorporated polymer electrolytes for supercapacitor application, Indian J. Chem. 49A (2010) 743–751.

Google Scholar

[3] S.W. Choi, J.R. Kim, S.M. Jo, W.S. Lee, Y. -R. Kim, Electrochemical and Spectroscopic Properties of Electrospun PAN-Based Fibrous Polymer Electrolytes, J. Electrochem. Soc. 152 (2005) A989.

DOI: 10.1149/1.1887166

Google Scholar

[4] S.W. Choi, S.M. Jo, W.S. Lee, Y. -R. Kim, An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications, Adv. Mater. 15 (2003) 2027–(2032).

DOI: 10.1002/adma.200304617

Google Scholar

[5] J.K. Kim, G. Cheruvally, X. Li, J.H. Ahn, K.W. Kim, H.J. Ahn, Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries, J. Power Sources. 178 (2008) 815–820.

DOI: 10.1016/j.jpowsour.2007.08.063

Google Scholar

[6] M. Deka, A. Kumar, Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries, J. Power Sources. 196 (2011) 1358–1364.

DOI: 10.1016/j.jpowsour.2010.09.035

Google Scholar

[7] J.R. Kim, S.W. Choi, S.M. Jo, W.S. Lee, B.C. Kim, Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries, Electrochim. Acta. 50 (2004) 69–75.

DOI: 10.1016/j.electacta.2004.07.014

Google Scholar

[8] S. Choudhary, R.J. Sengwa, Ionic conductivity of lithium perchlorate salt in polymeric electrolyte solutions and MMT nano-sheets dispersed colloids, Indian J. Eng. Mater. Sci. 19 (2012) 245–252.

Google Scholar

[9] Y. Zhang, Y. Zhao, Z. Bakenov, D. Gosselink, P. Chen, Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries, J. Solid State Electrochem. 18 (2014).

DOI: 10.1007/s10008-013-2366-y

Google Scholar

[10] A.K. Nath, A. Kumar, Ionic transport properties of PVdF-HFP-MMT intercalated nanocomposite electrolytes based on ionic liquid , 1-butyl-3- methylimidazolium bromide, Ionics (Kiel). 19 (2013) 1393–1403.

DOI: 10.1007/s11581-013-0878-1

Google Scholar

[11] H. Xie, Z. Tang, Z. Li, Y. He, Y. Liu, H. Wang, PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries, J. Solid State Electrochem. 12 (2008) 1497–1502.

DOI: 10.1007/s10008-008-0511-9

Google Scholar

[12] Y. Zhang, Y. Zhao, Z. Bakenov, D. Gosselink, P. Chen, Poly (vinylidene fluoride-co-hexafluoropropylene)/poly (methylmethacrylate)/ nanoclay composite gel polymer electrolyte for lithium/sulfur batteries, 18 (2014) 1111–1116.

DOI: 10.1007/s10008-013-2366-y

Google Scholar

[13] Q. Liu, J. Wu, Z. Lan, M. Zheng, G. Yue, J. Lin, et al., Preparation of PAA- g -PEG / PANI Polymer Gel Electrolyte and Its Application in Quasi Solid State Dye-Sensitized Solar Cells, Polym. Eng. Sci. 55 (2014) 1–5.

DOI: 10.1002/pen.23900

Google Scholar

[14] E. Vijayakumar, A. Subramania, Z. Fei, P.J. Dyson, Effect of 1-butyl-3-methylimidazolium iodide containing electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane electrolyte on the photovoltaic performance of dye-sensitized solar cells, J. Appl. Polym. Sci. 132 (2015).

DOI: 10.1002/app.42032

Google Scholar

[15] N. Angulakshmi, A.M. Stephan, Electrospun Trilayer Polymeric Membranes as Separator for Lithium-ion Batteries, Electrochim. Acta. 127 (2014) 167–172.

DOI: 10.1016/j.electacta.2014.01.162

Google Scholar

[16] M. Yanilmaz, C. Chen, X. Zhang, Fabrication and Characterization of SiO2/PVDF Composite Nanofiber-Coated PP Nonwoven Separators for Lithium-Ion Batteries, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 1719–1726.

DOI: 10.1002/polb.23387

Google Scholar

[17] S.H. Ju, Y. Lee, Y. Sun, D. Kim, Unique core–shell structured SiO2(Li+) nanoparticles for high-performance composite polymer electrolytes, J. Mater. Chem. A. 1 (2013) 395–401.

DOI: 10.1039/c2ta00556e

Google Scholar

[18] W. Xiao, X. Li, H. Guo, Z. Wang, Y. Zhang, X. Zhang, Preparation of core – shell structural single ionic conductor SiO2 @ Li+ and its application in PVDF – HFP-based composite polymer electrolyte, Electrochim. Acta. 85 (2012) 612–621.

DOI: 10.1016/j.electacta.2012.08.120

Google Scholar

[19] M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nano fi bers as electrode material for high performance asymmetric supercapacitors, Electrochim. Acta. 149 (2014) 152–158.

DOI: 10.1016/j.electacta.2014.10.021

Google Scholar

[20] Y.P. Wang, X.H. Gao, R.M. Wang, H.G. Liu, C. Yang, Y.B. Xiong, Effect of functionalized montmorillonite addition on the thermal properties and ionic conductivity of PVDF-PEG polymer electrolyte, React. Funct. Polym. 68 (2008) 1170–1177.

DOI: 10.1016/j.reactfunctpolym.2008.04.002

Google Scholar

[21] H. Qin, S. Zhang, C. Zhao, G. Hu, M. Yang, Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene, Polymer (Guildf). 46 (2005) 8386–8395.

DOI: 10.1016/j.polymer.2005.07.019

Google Scholar

[22] S. Choudhary, R.J. Sengwa, Dielectric relaxation spectroscopy and ion conduction in poly(ethylene oxide)-blend salts-montmorillonite nanocomposite electrolytes, Indian J. Pure Appl. Phys. 49 (2011) 204–213.

Google Scholar

[23] R.J. Sengwa, S. Choudhary, Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites, J. Appl. Polym. Sci. 131 (2014) 40617 (1–11).

DOI: 10.1002/app.40617

Google Scholar

[24] M.L. Verma, M. Minakshi, N.K. Singh, Structural and Electrochemical Properties of Nanocomposite Polymer Electrolyte for Electrochemical Devices, Ind. Eng. Chem. Res. 53 (2014) 14993–15001.

DOI: 10.1021/ie502615w

Google Scholar

[25] J.M. Yeh, S.J. Liou, C.Y. Lin, C.Y. Cheng, Y.W. Chang, K.R. Lee, Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent, Chem. Mater. 14 (2002) 154–161.

DOI: 10.1021/cm010337f

Google Scholar

[26] E. Vijayakumar, A. Subramania, Z. Fei, P.J. Dyson, High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte, RSC Adv. 5 (2015).

DOI: 10.1039/c5ra04944j

Google Scholar

[27] L. Priya, J.P. Jog, Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies, J. Polym. Sci. Part B Polym. Phys. 40 (2002) 1682–1689.

DOI: 10.1002/polb.10223

Google Scholar

[28] A. Okada, A. Usuki, Twenty Years of Polymer-Clay Nanocomposites, Macromol. Mater. Eng. 291 (2006) 1449–1476.

DOI: 10.1002/mame.200600260

Google Scholar

[29] G.S. T. Sornakumar, D. Ravindran, Studies on Effect of Nano TiO2 Ceramic Fillers of Polymer Matrix Composites, Int. J. ChemTech Res. 7 (2015) 617–621.

Google Scholar

[30] I.R.M. Kottegoda, Z. Bakenov, H. Ikuta, M. Wakihara, Stability of Lithium Polymer Battery Based on Substituted Spinel Cathode and PEG-Borate Ester∕PC Plasticized Polymer Electrolyte, J. Electrochem. Soc. 152 (2005) A1533–A1538.

DOI: 10.1149/1.1946387

Google Scholar

[31] D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, N.K. Karan, R.S. Katiyar, Effect of plasticizer on structural and electrical properties of polymer nanocompsoite electrolytes, Int. J. Electrochem. Sci. 2 (2007) 861–871.

DOI: 10.1016/s1452-3981(23)17118-5

Google Scholar

[32] C.H. Park, D.W. Kim, J. Prakash, Y.K. Sun, Electrochemical stability and conductivity enhancement of composite polymer electrolytes, Solid State Ionics. 159 (2003) 111–119.

DOI: 10.1016/s0167-2738(03)00025-0

Google Scholar