Preparation of Magnetic Polylactic Acid Fiber Mats by Electrospinning

Article Preview

Abstract:

Poly(lactic acid) (PLA) is blended with Poly(ethylene glycol) (PEG) and magnetic nanoparticles (MNPs). A series of mixtures are converted to fibers via electrospinning at room temperature. The fiber diameter of PLA decreases on blending with PEG from 6 down to 3 micrometers and with PEG + MNPs down ca. 1 micrometer. The thermogravimetric study confirms the effect of blending, enhancing the stability on adding PEG to PLA. The magnetic properties of polymer fibers containing different concentrations of MNPs are studied by vibrating sample magnetometer. The fiber blends shows proportionally reduced saturation magnetization compared to pure magnetic nanoparticles. The MNPs –incorporated PLA-PEG nanocomposite mat show magnetization and therefore promise the possibility for temperature effects, such as hyperthermia treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-47

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R.K. Sasikala, A.R. Unnithan, Y.H. Yun, C.H. Park, C.S. Kim, An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release, Acta Biomater. 31 (2016) 122–133.

DOI: 10.1016/j.actbio.2015.12.015

Google Scholar

[2] Y. Luo, S. Nartker, M. Wiederoder, H. Miller, D. Hochhalter, L.T. Drzal, E.C. Alocilja, Novel biosensor based on electrospun nanofiber and magnetic nanoparticles for the detection of E. coli O157: H7, IEEE Trans. Nanotechnol. 11 (2012) 676–681.

DOI: 10.1109/tnano.2011.2174801

Google Scholar

[3] G. Ding, Y. Guo, Y. Lv, X. Liu, L. Xu, X. Zhang, A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery, Colloids Surfaces B Biointerfaces. 91 (2012) 68–76.

DOI: 10.1016/j.colsurfb.2011.10.036

Google Scholar

[4] T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A magnetically triggered composite membrane for on-demand drug delivery, Nano Lett. 9 (2009) 3651–3657.

DOI: 10.1021/nl9018935

Google Scholar

[5] R. Saadat, F. Renz, Simultaneous cancer control and diagnosis with magnetic nanohybrid materials, Beilstein J. Nanotechnol. 7 (2016) 121–125.

DOI: 10.3762/bjnano.7.14

Google Scholar

[6] M. Saravanan, K. Bhaskar, G. Maharajan, K.S. Pillai, Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres, Int. J. Pharm. 283 (2004) 71–82.

DOI: 10.1016/j.ijpharm.2004.06.023

Google Scholar

[7] J.L. Arias, M.A. Ruiz, V. Gallardo, A.V. Delgado, Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles, J. Control. Release. 125 (2008) 50–58.

DOI: 10.1016/j.jconrel.2007.09.008

Google Scholar

[8] T. Meyer, M. Wolf, B. Dreyer, D. Unruh, C. Krüger, M. Menze, R. Sindelar, G. Klingelhöfer, F. Renz, Electrospun complexes - functionalised nanofibres, Hyperfine Interact. 237 (2016) 1–11.

DOI: 10.1007/s10751-016-1256-y

Google Scholar

[9] J.M. Holzwarth, P.X. Ma, Biomimetic nanofibrous scaffolds for bone tissue engineering, Biomaterials. 32 (2011) 9622–9629.

DOI: 10.1016/j.biomaterials.2011.09.009

Google Scholar

[10] S. Khansari, S. Sinha-ray, A.L. Yarin, B. Pourdeyhimi, Biopolymer-Based Nanofiber Mats and Their Mechanical Characterization, Ind. Eng. Chem. Res. 52 (2013) 15104-15113.

DOI: 10.1021/ie402246x

Google Scholar

[11] E.Y. Gómez-Pachón, R. Vera-Graziano, R.M. Campos, Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning, IOP Conf. Ser. Mater. Sci. Eng. 59 (2014) 12003.

DOI: 10.1088/1757-899x/59/1/012003

Google Scholar

[12] Y. Ikada, H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun. 21 (2000) 117–132.

DOI: 10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x

Google Scholar

[13] D.E. Henton, P. Gruber, J. Lunt, J. Randall, Polylactic Acid Technology, 48674 (2000) 1841–1846.

Google Scholar

[14] A. Wagner, V. Poursorkhabi, A.K. Mohanty, M. Misra, Analysis of Porous Electrospun Fibers from Poly( l -lactic acid)/Poly(3-hydroxybutyrate- co -3-hydroxyvalerate) Blends, ACS Sustain. Chem. Eng. 2 (2014) 1976–(1982).

DOI: 10.1021/sc5000495

Google Scholar

[15] Y. Wan, W. Chen, J. Yang, J. Bei, S. Wang, Biodegradable poly(L-lactide)-poly(ethylene glycol) multiblock copolymer: Synthesis and evaluation of cell affinity, Biomaterials. 24 (2003) 2195–2203.

DOI: 10.1016/s0142-9612(03)00107-8

Google Scholar

[16] E. Hendrick, M. Frey, Increasing Surface Hydrophilicity in Poly (Lactic Acid) Electrospun Fibers by Addition of Pla-b-Peg Co-Polymers., J. Eng. Fabr. Fibers. 9 (2014) 153–164.

DOI: 10.1177/155892501400900219

Google Scholar

[17] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96 (1996) 1533–1554.

DOI: 10.1021/cr9502357

Google Scholar

[18] G.J. Calton, Biotechnology and medicine, Cutis. 33 (1984) 375–378.

Google Scholar

[19] M. Kumar, R. Rahikainen, D. Unruh, V.P. Hytönen, C. Delbrück, R. Sindelar, F. Renz, Mixture of PLA-PEG and Biotinylated Albumin enables Immobilization of Avidins on Electrospun Fibers., J. Biomed. Mater. Res. A. (2016) in press.

DOI: 10.1002/jbm.a.35920

Google Scholar

[20] A. Toncheva, D. Paneva, V. Maximova, N. Manolova, I. Rashkov, Antibacterial fluoroquinolone antibiotic-containing fibrous materials from poly(l-lactide-co-d, l-lactide) prepared by electrospinning, Eur. J. Pharm. Sci. 47 (2012) 642–651.

DOI: 10.1016/j.ejps.2012.08.006

Google Scholar

[21] S. Rana, A. Gallo, R.S. Srivastava, R.D.K. Misra, On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: Functionalization, conjugation and drug release kinetics, Acta Biomater. 3 (2007) 233–242.

DOI: 10.1016/j.actbio.2006.10.006

Google Scholar

[22] M. Liu, Z. Cheng, J. Yan, L. Qiang, X. Ru, F. Liu, D. Ding, J. Li, Preparation and characterization of TiO2 nanofibers via using polylactic acid as template, J. Appl. Polym. Sci. 128 (2013) 1095–1100.

DOI: 10.1002/app.38166

Google Scholar

[23] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.S. Seo, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Control of degradation rate and hydrophilicity in electrospun non-woven poly(D, L-lactide) nanofiber scaffolds for biomedical applications, Biomaterials. 24 (2003).

DOI: 10.1016/s0142-9612(03)00407-1

Google Scholar

[24] H.J. Lee, S.J. Lee, S. Uthaman, R.G. Thomas, H. Hyun, Y.Y. Jeong, C.S. Cho, I.K. Park, Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibers, Int. J. Mol. Sci. 16 (2015) 13661–13677.

DOI: 10.3390/ijms160613661

Google Scholar

[25] B.D. Cullity, Introduction to magnetic materials, Addison-Wesley, Reading, MA, 1972, p.201.

Google Scholar

[26] M.A.M. Gijs, F. Lacharme, U. Lehmann, Microfluidic applications of magnetic particles for biological analysis and catalysis, Chem. Rev. 110 (2010) 1518–1563.

DOI: 10.1021/cr9001929

Google Scholar

[27] R.K. Singh, K.D. Patel, J.H. Lee, E.J. Lee, J.H. Kim, T.H. Kim, H.W. Kim, Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration, PLoS One. 9 (2014) e91584.

DOI: 10.1371/journal.pone.0091584

Google Scholar

[28] T.Y. Liu, S.H. Hu, T.Y. Liu, D.M. Liu, S.Y. Chen, Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug, Langmuir. 22 (2006) 5974–5978.

DOI: 10.1021/la060371e

Google Scholar

[29] J.M. Shen, T. Yin, X.Z. Tian, F.Y. Gao, S. Xu, Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug, ACS Appl. Mater. Interfaces. 5 (2013) 7014–7024.

DOI: 10.1021/am401277s

Google Scholar

[30] L. Hosseini, K. Mahboobnia, M. Irani, Fabrication of PLA/MWCNT/Fe 3 O 4 composite nanofibers for leukemia cancer cells, Int. J. Polym. Mater. Polym. Biomater. 65 (2016) 176–182.

DOI: 10.1080/00914037.2015.1074912

Google Scholar