Interactions between PA6 Ratio and Tensile Properties in PVA/PA6 Hybrid Nanofiber Yarns

Article Preview

Abstract:

In this study, we fabricated poly vinyl alcohol/polyamide 6 (PVA/PA6) hybrid nanofiber yarns and examined the influence of PA6 content on tensile properties of hybrid nanofiber yarns. The surface morphology of nanofiber yarns was studied by scanning electron microscope (SEM). The average diameters of nanofibers in pure PA6 and pure PVA nanofibers yarns were 83±12 nm and 187±21 nm, respectively. The results showed that the strength of hybrid yarns was descending for PA6 contents below 16.5 % and ascending for higher contents. Also, by increasing the PA6 ratio in the hybrid yarn, the elongation at break was decreased. Three various models including: Hamburger, simple rule of mixtures (ROM) and hybrid models were applied to predict the tensile behavior of hybrid yarns. This study showed that neither ROM nor Hamburger’s models were capable of predicting the tensile properties of hybrid yarns. Whiles, hybrid model can predict properties with the lowest error (6.44 % error in strength values and 13.06 % error in elongation values prediction). Moreover, this model was modified further for higher performance. Our results demonstrate that the hybrid model can be applied in engineered tensile properties of nanofibrous yarns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-37

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ‏ Wang, R., Liu, Y., Li, B., Hsiao, B.S. and Chu, B. (2012), Electrospun Nanofibrous Membranes for High Flux Microfiltration, J Membr Sci, 392, pp.167-174.

DOI: 10.1016/j.memsci.2011.12.019

Google Scholar

[2] Ebadi, S.V., Fakhrali, A., Gharehaghaji, A.A., Mazinani, S., Ranaei-Siadat, S.O. (2015).

Google Scholar

[3] Ebadi, S.V., Fakhrali, A., Ranaei-Siadat, S.O., Gharehaghaji, A.A., Mazinani, S., Dinari, M. and Harati, J. (2015).

DOI: 10.1039/c5ra03456f

Google Scholar

[4] Zamani, F., Amani‐Tehran, M., Latifi, M., Shokrgozar, M.A., & Zaminy, A. (2014), Promotion of Spinal Cord Axon Regeneration by 3D Nanofibrous Core–sheath Scaffolds, J Biomed Mater Res Part A, 102, pp.506-513.

DOI: 10.1002/jbm.a.34703

Google Scholar

[5] Dalton, P.D., Klee, D., Möller, M. (2005), Electrospinning with Dual Collection Rings, Polymer, 46, p.611–614.

DOI: 10.1016/j.polymer.2004.11.075

Google Scholar

[6] Fennessey, S.F., Farris, R.J. (2004), Fabrication of Aligned and Molecularly Oriented Electrospun Polyacrylonitrile Nanofibers and the Mechanical Behavior of Their Twisted Yarns, Polymer, 45, p.4217–4225.

DOI: 10.1016/j.polymer.2004.04.001

Google Scholar

[7] Zhou, F.L., Gong, R.H. (2008), Review: Manufacturing Technologies of Polymeric Nanofibres and Nanofibre Yarns, Polym Int, 57, p.837–845.

DOI: 10.1002/pi.2395

Google Scholar

[8] Liu, H., Leonas, K.K., Zhao, Y. (2010), Antimicrobial Properties and Release Profile of Ampicillin from Electrospun Poly(ε-caprolactone) Nanofiber Yarns,. J Eng Fiber Fabr, 5, pp.10-19.

DOI: 10.1177/155892501000500402

Google Scholar

[9] Penchev, H., Paneva, D., Manolova, N., Rashkov, I. (2010), Hybrid Nanofibrous Yarns Based on N-Carboxyethylchitosan and Silver Nanoparticles with Antibacterial Activity Prepared by Self-bundling Electrospinning", Carbohydr Res, 345, pp.2374-2380.

DOI: 10.1016/j.carres.2010.08.014

Google Scholar

[10] Haghighat, F. and Hosseini Ravandi, S.A. (2014), Mechanical properties and in vitro degradation of PLGA suture manufactured via electrospinning, Fiber Polym, 15, pp.71-77.

DOI: 10.1007/s12221-014-0071-9

Google Scholar

[11] Lotus, A.F., Bender, E.T., Evans, E.A., Ramsier, R.D., Reneker, D.H. and Chase, G.G. (2008), Electrical, structural, and chemical properties of semiconducting metal oxide anofiber yarns, J Appl Phys, 103, p.024910. ‏.

DOI: 10.1063/1.2831362

Google Scholar

[12] Lotus, A.F., Bhargava, S., Bender, E.T., Evans, E.A., Ramsier, R.D., Reneker, D.H. and Chase, G.G. (2009), Electrospinning route for the fabrication of pn junction using nanofiber yarns, J Appl Phys, 106, p.014303.

DOI: 10.1063/1.3157206

Google Scholar

[13] Khil, M.S., Bhattarai, S.R., Kim, H.Y., Kim, S.Z. and Lee, K.H. (2005), Novel Fabricated Matrix via Electrospinning for TissueEngineering, J Biomed Mater Res, 72, pp.117-124.

DOI: 10.1002/jbm.b.30122

Google Scholar

[14] Pan, H., Li, L., Hu, L. and Cui, X. (2006), Continuous Aligned Polymer Fibers Produced By a Modified Electrospinning Method, Polymer, 47, pp.4901-4904.

DOI: 10.1016/j.polymer.2006.05.012

Google Scholar

[15] Dabirian, F. and Hosseini, S.A. (2009), Novel Method For Nanofibre Yarn Production Using Two Differently Charged Nozzles, Fiber Text East Eur, 17, pp.45-47.

Google Scholar

[16] Fakhrali, A., Ebadi, S.V., Gharehaghaji, A.A. (2014), Production of Core-Sheath Nanofiber Yarn Using Two Opposite Asymmetric Nozzles, Fiber Polym, 15, pp.2535-2540.

DOI: 10.1007/s12221-014-2535-3

Google Scholar

[17] Barella, A., Manich, A. (1984), Diameter and Hairiness of Ring and Rotor Polyester-Cotton Blended Yarns, Text Res J, 54, pp.840-844.

DOI: 10.1177/004051758405401208

Google Scholar

[18] Duket, K.E., Goswam, B.C., Ramey, H.H. (1979), Mechanical Properties of Cotton-Polyester Contribution of Inter-fiber Friction to Breaking Energy, Text Res J, 49, pp.262-267.

Google Scholar

[19] Pan, N., Chen, K. (2000), Studying the Mechanical Properties of Blended Fibrous Structures Using a Simple Model, Text Res J, 70, pp.502-507. ‏.

DOI: 10.1177/004051750007000606

Google Scholar

[20] Hamburger, J.W. (1949), The Industrial Applications of the Stress-strain Relationship, J Text Inst, 40, pp.700-720.

Google Scholar

[21] Nielsen, L.E. (1978), Predicting the Properties of Mixtures, Marcel Dekker New York.

Google Scholar

[22] Marom, G., Fischer, S., Tuler, F.R., Wagner, H.D. (1978), Hybrid Effects in Composites; Conditions for Positive or Negative Effects Versus Rule of Mixtures, J Mater Sci, 13, pp.1419-1426.

DOI: 10.1007/bf00553194

Google Scholar

[23] Baykal, P.D., Babaarslan, O., Erol, R., (2006), Prediction of Strength and Elongation Properties of Cotton/Polyester Blended OE Rotor Yarns, Fiber Text East Eur, 14, pp.18-21.

Google Scholar

[24] Aghasian, S., Gharehaghaji, A.A., Ghane, M., Parsian, A. (2008), Investigation on The Properties of Blended Rotor-Spun Cotton/Polyester Yarn Using a Hybrid Model, J Text Inst, 99, pp.459-465.

DOI: 10.1080/00405000701608441

Google Scholar

[25] Moghassem, A.R., Fakhrali, A., (2013), Comparative Study on the Effect of Blend Ratio on Tensile Properties of Ring and Rotor Cotton-Polyester Blended Yarns Using Concept of the Hybrid Effect, Fiber Polym, 14, pp.157-163.

DOI: 10.1007/s12221-013-0157-9

Google Scholar

[26] Fakhrali, A., Ebadi, S.V., Gharehaghaji, A.A., Latifi, M., Moghassem, A. (2016), Analysis of Twist Level and Take-Up Speed Impact on the Tensile Properties of PVA/PA6 Hybrid Nanofiber Yarns, e-Polymers, 16, pp.125-135.

DOI: 10.1515/epoly-2015-0248

Google Scholar