Fabrication of Gelatin-Zr (IV) Phosphate and Alginate-Zr (IV) Phosphate Nanocomposite Based Ion Selective Membrane Electrode

Article Preview

Abstract:

Gelatin- Zr (IV) phosphate nanocomposite (GT@ZPNC) and alginate- Zr (IV) phosphate nanocomposite (AG@ZPNC) ion exchangers has been prepared by sol-gel method. The nanocomposites are characterised by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results of GT@ZPNC and AG@ZPNC confirmed that after the binding of polymer matrix to inorganic part, morphology was completely reformed. TEM results confirmed the synthesised materials were nanocomposite in nature. The GT@ZPNC and AG@ZPNC ion exchangers have been explored to fabricate ion selective electrode for the detection of Cd (II) and Al (III) metal ions. Both ion selective membrane electrodes show wide working concentration and pH range with good response time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-120

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.H. Wang, S. Zhang, Z.H. Ye, D.L. Peng, L.H. He, F.F. Yan, Y.Q. Yang, H.Z. Zhang, A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb (II) and Hg (II), Microchim Acta. 182 (2015).

DOI: 10.1007/s00604-015-1569-6

Google Scholar

[2] L. Jarup, Hazards of heavy metal contamination, Br. Med. Bull. 68 (2003) 167–182.

Google Scholar

[3] G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev. 111 (2011) 3433–3458.

DOI: 10.1021/cr100383r

Google Scholar

[4] S. Sharma, D. Pathania, P. Singh, Preparation, characterization and Cr (VI) adsorption behavior study of poly(acrylic acid) grafted Ficus carica bast fiber, Adv. Mater. Lett. 4 (2013) 271–276.

DOI: 10.5185/amlett.2012.8409

Google Scholar

[5] A. Abbaspour, A.R. Esmaeilbeig, A.A. Jarrahpour, B. Khajeh, R. Kia, Aluminium (III)-selective electrode based on a newly synthesized tetradentate Schiff base, Talanta. 58 (2002) 397-403.

DOI: 10.1016/s0039-9140(02)00290-4

Google Scholar

[6] V. Brânzoi, L. Pilan, F. Golgovici, F. Brânzoi, Electrochemical activity and corrosion protection properties of doped polypyrrole electrodeposited at pure aluminium electrode, Mol Crystliq Cryst. 446 (2006) 305-318.

DOI: 10.1080/15421400500379996

Google Scholar

[7] A.A. Khan, T. Akhtar, Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce (IV) phosphate: its application in making Cd (II) ion selective membrane electrode. Solid State Sci. 13 (2011).

DOI: 10.1016/j.solidstatesciences.2010.12.026

Google Scholar

[8] M. Naushad, Z.A. Al-Othman, M. Islam, Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn (IV) silicate: kinetics, thermodynamic and isotherm studies, Int J Environ Sci Te. 10 (2013) 567-578.

DOI: 10.1007/s13762-013-0189-0

Google Scholar

[9] J.L. Ling, S. Ab Ghani, Poly (4-vinylpyridine-co-aniline)-modified electrode—synthesis, characterization, and application as cadmium (II) ion sensor, J. Solid State Electrochem. 17 (2013) 681-690.

DOI: 10.1007/s10008-012-1910-5

Google Scholar

[10] E. Pungor, K. Toth, Ion selective electrodes in analytical chemistry, Plenum Press., New York, 1 (1978) 143.

Google Scholar

[11] A.K. Jain, V.K. Gupta, L.P. Sigh, U. Khurana, Novel PVC-based membrane sensors selective for vanadyl ions, Talanta. 46 (1998) 1453–1460.

DOI: 10.1016/s0039-9140(98)00016-2

Google Scholar

[12] A. Rouhollahi, M.R. Ganjali, M. Shamsipur, Lead ion selective PVC membrane electrode based on 5,5-dithiobis-(2-nitrobenzoic acid), Talanta. 46 (1998) 1341–1346.

DOI: 10.1016/s0039-9140(97)00421-9

Google Scholar

[13] M.K. Amini, S. Shahrokhian, S. Tangestaninejad, PVC-based Mn (III) porphyrin membrane-coated graphite electrode for determination of histidine, Anal. Chem. 71 (1999) 2502–2505.

DOI: 10.1021/ac9812633

Google Scholar

[14] T. Lindfors, A. Ivaska, All-solid-state calcium selective electrode prepared of soluble electrically conducting polyaniline and di (2-ethylhexyl) phosphate with ETH1001 as neutral carrier, Anal. Chim. Acta. 404 (2000) 101–110.

DOI: 10.1016/s0003-2670(99)00687-x

Google Scholar

[15] S.S.M. Hassan, M.B. Saleh, A.A. Abdel Gaber, R.A.H. Mekheimer, N.A.A. Kream, Novel mercury (II) ion-selective polymeric membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate, Talanta. 53 (2000) 285–293.

DOI: 10.1016/s0039-9140(00)00445-8

Google Scholar

[16] M.K. Amini, S. Shahrokhian, S. Tangestaninejad, Thiocyanateselective electrodes based on nickel and iron phthalocyanines, Anal. Chim. Acta. 402 (1999) 137–143.

DOI: 10.1016/s0003-2670(99)00549-8

Google Scholar

[17] M. Shamsipur, M. Yousefi, M. Hosseini, M.R. Ganjali, H. Sharghi, H. Naemi, A Schiff base complex of Zn(II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion, Anal. Chem. 73 (2001) 2869–2874.

DOI: 10.1021/ac001449d

Google Scholar

[18] M. Ganjali, T. Poursaberi, F. Basiripour, M. Salavati-Niasari, M. Yousefi, M. Shamsipur, Highly selective thiocyanate poly (vinyl chloride) membrane electrode based on a cadmium–Schiff base complex, Fresnius J. Anal. Chem. 370 (2001) 1091–1095.

DOI: 10.1007/s002160100915

Google Scholar

[19] Z.Q. Li, Z.Y. Wu, R. Yuan, M. Ying, G.L. Shen, R.Q. Yu, Thiocyanate selective PVC membrane electrodes based on Mn (II) complex of N, N bis-(4-phenylazosalicylidene) o-phenylene diamine as a neutral carrier, Electrochim. Acta. 44 (1999) 2543–2548.

DOI: 10.1016/s0013-4686(98)00361-2

Google Scholar

[20] S. Amemiya, P. Buhlmann, Y. Umezawa, R.C. Jagessar, D.H. Burns, An ion-selective for acetate based on a urea-functionalized porphyrinas a hydrogen-bonding ionophore, Anal. Chem. 71 (1999) 1049–1054.

DOI: 10.1021/ac980952b

Google Scholar

[21] M. Ying, R. Yuan, X.M. Zhang, Y.Q. Song, Z.Q. Li, G.I. Shen, R.Q. Yu, Highly selective iodide poly(vinyl chloride) membrane electrode based on a nickel(II) tetraazaannulene macrocyclic complex, Analyst. 122 (1997) 1143–1146.

DOI: 10.1039/a700544j

Google Scholar

[22] A. Demirel, A. Dogan, E. Canel, S. Memon, M.Yilmaz, E. Kilic, Hydrogen ion-selective ploy(vinyl chloride) electrode based on a p-tert-butylcalix.

DOI: 10.1016/s0039-9140(03)00414-4

Google Scholar

[4] arene-oxacrown-4, Tanata. 62 (2004) 123–129.

Google Scholar

[23] A.K. Jain, V.K. Gupta, J.R. Raisoni, Strontium(II)-selective potentiometric sensor based on ester derivative of 4-ter-butylcalix.

DOI: 10.3390/s40800115

Google Scholar

[8] arene in PVC matrix, Sensors. 4 (2004) 115–124.

Google Scholar

[24] S. Peper, C. Gonczy, W. Runde, Cs-selective membrane electrodes based on ethylene glycol-functionalized polymeric microspheres, Talanta. 67 (2005) 713–717.

DOI: 10.1016/j.talanta.2005.03.014

Google Scholar

[25] C.J. Coetzee, A.J. Benson, A cesium-sensitive electrode, Anal. Chim. Acta 57 (1971) 478–480.

Google Scholar

[26] S.K. Mittal, P.P. Singh, Thorium selective electrode using zirconium phosphoborate as electroactive material, Indian J. Chem. 34A (1995) 1009–1011.

DOI: 10.1002/chin.199609007

Google Scholar

[27] Z. Chen, P.W. Alexander, Flow-injection potentiometric detection of metal ions based on tungsten oxide electrode, Electroanalysis. 9 (1997) 141–144.

DOI: 10.1002/elan.1140090210

Google Scholar

[28] J.W. Ross, in: R.A. Durst (Ed.), Ion Selective Electrodes, Government Printing Office, Washington, NBS Special Publication No. 314, (1969).

Google Scholar

[29] A. Panwar, S. Baniwal, C.L. Sharma, A.K. Singh, A polystyrene based membrane electrode for Cd(II) ions, Fresenius J. Anal. Chem. 368 (2000) 768–772.

DOI: 10.1007/s002160000601

Google Scholar

[30] K.K. Tiwari, M.C. Chattopadhyaya, Heterogeneous precipitate based Cu(II)-ion-selective electrodes and its application in the determination of stability constant of Cu(II) complex with 4-(2-pyridylazo)-resorcinol, Indian J. Chem. 40 (2001).

Google Scholar

[31] A.P. Gupta, Renuka, Studies on araldite based zirconium tungstophoaphate membrane—a lead (II) ion-selective electrode, Indian J. Chem. 36 (1997) 1073–1074.

Google Scholar

[32] A.P. Mishra, M. Khare, S.K. Gautam, Precipitate based selective ion sensitive membrane electrodes for dipositive cobalt and copper, J. Electrochem. Soc. India. 50 (2001) 119–121.

Google Scholar

[33] S.K. Srivastava, V.K. Tewati, H. Vardhana, An Inorganic gel membrane sensor for cadmium ions, Indian J. Chem. 34A (1995) 625–629.

Google Scholar

[34] A.A. Khan, Inamuddin, M.M. Alam, Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: Polypyrrole thorium (IV) phosphate, React. Funct. Polym. 63 (2005) 119–133.

DOI: 10.1016/j.reactfunctpolym.2005.02.001

Google Scholar

[35] A.A. Khan, M.M. Alam, Synthesis, characterization and analytical applications of a new and novel organic–inorganic, composite material as a cation-exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn (IV) tungstoarsenate, React. Funct. Polym. 55 (2003).

DOI: 10.1016/s1381-5148(03)00018-x

Google Scholar

[36] A.A. Khan, M.M. Alam, New and novel organic–inorganic type crystalline polypyrrolel/ polyantimonic acid, composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg (II) ion-selective membrane electrode, Anal. Chim. Acta. 504 (2004).

DOI: 10.1016/j.aca.2003.10.054

Google Scholar

[37] N.E. Fedorovich, E. Kuipers, D. Gawlitta, W.J. Dhert, J. Alblas, Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors, Tissue Eng., Part A. 17 (2011) 2473–86.

DOI: 10.1089/ten.tea.2011.0001

Google Scholar

[38] T. Billiet, M. Vandenhaute, J. Schelfhout, S. V. Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering, Biomaterials. 33 (2012) 6020–41.

DOI: 10.1016/j.biomaterials.2012.04.050

Google Scholar

[39] J.H. Shim, J.S. Lee, J.Y. Kim, D.W. Cho, Bio printing of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system, J. Micromech. Microeng. 22 (2012).

DOI: 10.1088/0960-1317/22/8/085014

Google Scholar

[40] F.P. Melchels, M.A. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, D.W. Hutmacher, Additive manufacturing of tissues and organs, Prog. Polym. Sci. 37 (2012) 1079–4.

DOI: 10.1016/j.progpolymsci.2011.11.007

Google Scholar

[41] E. Boanini, A. Bigi, Biomimetic gelatin–octacalcium phosphate core–shell microspheres, J. Colloid Interface Sci. 362 (2011) 594– 9.

DOI: 10.1016/j.jcis.2011.06.061

Google Scholar

[42] A. Bigi, S. Panzavolta, K. Rubini, Relationship between triple-helix content and mechanical properties of gelatin films, Biomaterials. 25 (2004) 5675–80.

DOI: 10.1016/j.biomaterials.2004.01.033

Google Scholar

[43] S.B. Ross-Murphy, Structure and rheology of gelatin gels: recent progress, Polymer. 33 (1992) 2622-7.

DOI: 10.1016/0032-3861(92)91146-s

Google Scholar

[44] Z.M. Siddiqi, D. Pathania, Titanium (IV) tungstosilicate and titanium (IV) tungstophosphate: two new inorganic ion exchangers, J. Chromatogr. A. 987 (2003) 147–158.

DOI: 10.1016/s0021-9673(02)01659-x

Google Scholar

[45] Z.A. AL-Othman, Mu. Naushad, Inamuddin, Organic–inorganic type composite cation exchanger poly-o-toluidine Zr (IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals, Chem. Eng. J. 172 (2011).

DOI: 10.1016/j.cej.2011.06.018

Google Scholar

[46] D. Pathania, G. Sharma, M. Naushad, A. Kumar, Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce (IV) silicophosphate: photocatalytic and antimicrobial applications, J. Ind. Eng. Chem. 20 (2014) 3596–3603.

DOI: 10.1016/j.jiec.2013.12.054

Google Scholar

[47] G. Sharma, D. Pathania, M. Naushad, Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium (IV) selenotungstophosphate for the separation of toxic metal ions, Ionics.  21.4 (2015) 1045-1055.

DOI: 10.1007/s11581-014-1269-y

Google Scholar

[48] C.J. Coetzee, A.J. Benson, A cesium-sensitive electrode, Anal. Chim. Acta 57 (1971) 478–480.

Google Scholar

[49] A. Craggs, G.J. Moody, J.D.R. Thomas, PVC matrix membranes ionselective electrodes. Construction and laboratory experiments, J. Chem. Educ. 51 (1974) 541–544.

DOI: 10.1021/ed051p541

Google Scholar

[50] S. Kaushal, R. Badru, S. Kumar, S.K. Mittal, P. Singh, Fabrication of a mercury (II) ion selective electrode based on poly-o-toluidine–zirconium phosphoborate, RSC Advances. 6 (2016) 3150-3158.

DOI: 10.1039/c5ra23284h

Google Scholar

[51] A.A. Khan, Applications of Hg (II) sensitive polyaniline Sn (IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode, Sens Actuators B Chem. 120 (2006) 10-18.

DOI: 10.1016/j.snb.2006.01.033

Google Scholar

[52] M. K. Amini, M. Mazloum, A. A. Ensaf, Lead selective membrane electrode using cryptand (222) neutral carrier, Fresenius J. Anal. Chem. 364 (1999) 690-693.

DOI: 10.1007/s002160051415

Google Scholar

[53] A. Demirel, A. Dogan, E. Canel, S. Memon, M. Yilmaz, E. Kilic, Hydrogen ion-selective poly (vinyl chloride) membrane electrode based on a p-tert-butylcalix.

DOI: 10.1016/s0039-9140(03)00414-4

Google Scholar

[4] arene-oxacrown-4, Talanta. 62 (2004) 123–129.

Google Scholar

[54] A.A. Khan, M.M. Alam, Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: Polypyrrole thorium (IV) phosphate, React. Funct. Polym. 63 (2005) 119-133.

DOI: 10.1016/j.reactfunctpolym.2005.02.001

Google Scholar

[55] G. Sharma, V.K. Gupta, S. Agarwal, A. Kumar, S. Thakur, D. Pathania, Fabrication and characterization of Fe@ MoPO nanoparticles: Ion exchange behavior and photocatalytic activity against malachite green. J. Mol. Liq. 219 (2016) 1137-1143.

DOI: 10.1016/j.molliq.2016.04.046

Google Scholar

[56] D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala'a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 87 (2016) 366-374.

DOI: 10.1016/j.ijbiomac.2016.02.073

Google Scholar

[57] A. Mittal, M. Naushad, G. Sharma, Z.A. AL-Othman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb (II) metal from aqueous medium. Desalination Water Treat. 57 (2016) 21863-21869.

DOI: 10.1080/19443994.2015.1125805

Google Scholar

[58] G. Sharma, D. Pathania, M. Naushad, Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium (IV) selenotungstophosphate for the separation of toxic metal ions. Ionics. 21 (2015) 1045-1055.

DOI: 10.1007/s11581-014-1269-y

Google Scholar

[59] V.K. Gupta, S. Agarwal, I. Tyagi, D. Pathania, B.S. Rathore, G. Sharma, Synthesis, characterization and analytical application of cellulose acetate-tin (IV) molybdate nanocomposite ion exchanger: binary separation of heavy metal ions and antimicrobial activity. Ionics. 21 (2015).

DOI: 10.1007/s11581-015-1368-4

Google Scholar

[60] G. Sharma, A. Kumar, M. Naushad, A. Kumar, A.a.H. Al-Muhtaseb, P. Dhiman, A.A. Ghfar, F.J. Stadler, M.R. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites, J. Clean. Prod. 172 (2018).

DOI: 10.1016/j.jclepro.2017.11.122

Google Scholar

[61] A. Kumar, A. Kumar, G. Sharma, A.a.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chem. Eng. J. 334 (2018).

DOI: 10.1016/j.cej.2017.10.049

Google Scholar

[62] G. Sharma, D. Kumar, A. Kumar, A.a.H. Al-Muhtaseb, D. Pathania, M. Naushad, G.T. Mola, Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review, Mater. Sci. Eng., C. 71 (2017).

DOI: 10.1016/j.msec.2016.11.002

Google Scholar

[63] G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, M.R. Khan, S. Kalia, Shweta, M. Bala, A. Sharma, Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium, Int. J. Biol. Macromol. 95 (2017).

DOI: 10.1016/j.ijbiomac.2016.11.072

Google Scholar

[64] M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity, Colloids Surf., B Biointerfaces. 157 (2017).

DOI: 10.1016/j.colsurfb.2017.06.018

Google Scholar