[1]
M.H. Wang, S. Zhang, Z.H. Ye, D.L. Peng, L.H. He, F.F. Yan, Y.Q. Yang, H.Z. Zhang, A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb (II) and Hg (II), Microchim Acta. 182 (2015).
DOI: 10.1007/s00604-015-1569-6
Google Scholar
[2]
L. Jarup, Hazards of heavy metal contamination, Br. Med. Bull. 68 (2003) 167–182.
Google Scholar
[3]
G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev. 111 (2011) 3433–3458.
DOI: 10.1021/cr100383r
Google Scholar
[4]
S. Sharma, D. Pathania, P. Singh, Preparation, characterization and Cr (VI) adsorption behavior study of poly(acrylic acid) grafted Ficus carica bast fiber, Adv. Mater. Lett. 4 (2013) 271–276.
DOI: 10.5185/amlett.2012.8409
Google Scholar
[5]
A. Abbaspour, A.R. Esmaeilbeig, A.A. Jarrahpour, B. Khajeh, R. Kia, Aluminium (III)-selective electrode based on a newly synthesized tetradentate Schiff base, Talanta. 58 (2002) 397-403.
DOI: 10.1016/s0039-9140(02)00290-4
Google Scholar
[6]
V. Brânzoi, L. Pilan, F. Golgovici, F. Brânzoi, Electrochemical activity and corrosion protection properties of doped polypyrrole electrodeposited at pure aluminium electrode, Mol Crystliq Cryst. 446 (2006) 305-318.
DOI: 10.1080/15421400500379996
Google Scholar
[7]
A.A. Khan, T. Akhtar, Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce (IV) phosphate: its application in making Cd (II) ion selective membrane electrode. Solid State Sci. 13 (2011).
DOI: 10.1016/j.solidstatesciences.2010.12.026
Google Scholar
[8]
M. Naushad, Z.A. Al-Othman, M. Islam, Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn (IV) silicate: kinetics, thermodynamic and isotherm studies, Int J Environ Sci Te. 10 (2013) 567-578.
DOI: 10.1007/s13762-013-0189-0
Google Scholar
[9]
J.L. Ling, S. Ab Ghani, Poly (4-vinylpyridine-co-aniline)-modified electrode—synthesis, characterization, and application as cadmium (II) ion sensor, J. Solid State Electrochem. 17 (2013) 681-690.
DOI: 10.1007/s10008-012-1910-5
Google Scholar
[10]
E. Pungor, K. Toth, Ion selective electrodes in analytical chemistry, Plenum Press., New York, 1 (1978) 143.
Google Scholar
[11]
A.K. Jain, V.K. Gupta, L.P. Sigh, U. Khurana, Novel PVC-based membrane sensors selective for vanadyl ions, Talanta. 46 (1998) 1453–1460.
DOI: 10.1016/s0039-9140(98)00016-2
Google Scholar
[12]
A. Rouhollahi, M.R. Ganjali, M. Shamsipur, Lead ion selective PVC membrane electrode based on 5,5-dithiobis-(2-nitrobenzoic acid), Talanta. 46 (1998) 1341–1346.
DOI: 10.1016/s0039-9140(97)00421-9
Google Scholar
[13]
M.K. Amini, S. Shahrokhian, S. Tangestaninejad, PVC-based Mn (III) porphyrin membrane-coated graphite electrode for determination of histidine, Anal. Chem. 71 (1999) 2502–2505.
DOI: 10.1021/ac9812633
Google Scholar
[14]
T. Lindfors, A. Ivaska, All-solid-state calcium selective electrode prepared of soluble electrically conducting polyaniline and di (2-ethylhexyl) phosphate with ETH1001 as neutral carrier, Anal. Chim. Acta. 404 (2000) 101–110.
DOI: 10.1016/s0003-2670(99)00687-x
Google Scholar
[15]
S.S.M. Hassan, M.B. Saleh, A.A. Abdel Gaber, R.A.H. Mekheimer, N.A.A. Kream, Novel mercury (II) ion-selective polymeric membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate, Talanta. 53 (2000) 285–293.
DOI: 10.1016/s0039-9140(00)00445-8
Google Scholar
[16]
M.K. Amini, S. Shahrokhian, S. Tangestaninejad, Thiocyanateselective electrodes based on nickel and iron phthalocyanines, Anal. Chim. Acta. 402 (1999) 137–143.
DOI: 10.1016/s0003-2670(99)00549-8
Google Scholar
[17]
M. Shamsipur, M. Yousefi, M. Hosseini, M.R. Ganjali, H. Sharghi, H. Naemi, A Schiff base complex of Zn(II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion, Anal. Chem. 73 (2001) 2869–2874.
DOI: 10.1021/ac001449d
Google Scholar
[18]
M. Ganjali, T. Poursaberi, F. Basiripour, M. Salavati-Niasari, M. Yousefi, M. Shamsipur, Highly selective thiocyanate poly (vinyl chloride) membrane electrode based on a cadmium–Schiff base complex, Fresnius J. Anal. Chem. 370 (2001) 1091–1095.
DOI: 10.1007/s002160100915
Google Scholar
[19]
Z.Q. Li, Z.Y. Wu, R. Yuan, M. Ying, G.L. Shen, R.Q. Yu, Thiocyanate selective PVC membrane electrodes based on Mn (II) complex of N, N bis-(4-phenylazosalicylidene) o-phenylene diamine as a neutral carrier, Electrochim. Acta. 44 (1999) 2543–2548.
DOI: 10.1016/s0013-4686(98)00361-2
Google Scholar
[20]
S. Amemiya, P. Buhlmann, Y. Umezawa, R.C. Jagessar, D.H. Burns, An ion-selective for acetate based on a urea-functionalized porphyrinas a hydrogen-bonding ionophore, Anal. Chem. 71 (1999) 1049–1054.
DOI: 10.1021/ac980952b
Google Scholar
[21]
M. Ying, R. Yuan, X.M. Zhang, Y.Q. Song, Z.Q. Li, G.I. Shen, R.Q. Yu, Highly selective iodide poly(vinyl chloride) membrane electrode based on a nickel(II) tetraazaannulene macrocyclic complex, Analyst. 122 (1997) 1143–1146.
DOI: 10.1039/a700544j
Google Scholar
[22]
A. Demirel, A. Dogan, E. Canel, S. Memon, M.Yilmaz, E. Kilic, Hydrogen ion-selective ploy(vinyl chloride) electrode based on a p-tert-butylcalix.
DOI: 10.1016/s0039-9140(03)00414-4
Google Scholar
[4]
arene-oxacrown-4, Tanata. 62 (2004) 123–129.
Google Scholar
[23]
A.K. Jain, V.K. Gupta, J.R. Raisoni, Strontium(II)-selective potentiometric sensor based on ester derivative of 4-ter-butylcalix.
DOI: 10.3390/s40800115
Google Scholar
[8]
arene in PVC matrix, Sensors. 4 (2004) 115–124.
Google Scholar
[24]
S. Peper, C. Gonczy, W. Runde, Cs-selective membrane electrodes based on ethylene glycol-functionalized polymeric microspheres, Talanta. 67 (2005) 713–717.
DOI: 10.1016/j.talanta.2005.03.014
Google Scholar
[25]
C.J. Coetzee, A.J. Benson, A cesium-sensitive electrode, Anal. Chim. Acta 57 (1971) 478–480.
Google Scholar
[26]
S.K. Mittal, P.P. Singh, Thorium selective electrode using zirconium phosphoborate as electroactive material, Indian J. Chem. 34A (1995) 1009–1011.
DOI: 10.1002/chin.199609007
Google Scholar
[27]
Z. Chen, P.W. Alexander, Flow-injection potentiometric detection of metal ions based on tungsten oxide electrode, Electroanalysis. 9 (1997) 141–144.
DOI: 10.1002/elan.1140090210
Google Scholar
[28]
J.W. Ross, in: R.A. Durst (Ed.), Ion Selective Electrodes, Government Printing Office, Washington, NBS Special Publication No. 314, (1969).
Google Scholar
[29]
A. Panwar, S. Baniwal, C.L. Sharma, A.K. Singh, A polystyrene based membrane electrode for Cd(II) ions, Fresenius J. Anal. Chem. 368 (2000) 768–772.
DOI: 10.1007/s002160000601
Google Scholar
[30]
K.K. Tiwari, M.C. Chattopadhyaya, Heterogeneous precipitate based Cu(II)-ion-selective electrodes and its application in the determination of stability constant of Cu(II) complex with 4-(2-pyridylazo)-resorcinol, Indian J. Chem. 40 (2001).
Google Scholar
[31]
A.P. Gupta, Renuka, Studies on araldite based zirconium tungstophoaphate membrane—a lead (II) ion-selective electrode, Indian J. Chem. 36 (1997) 1073–1074.
Google Scholar
[32]
A.P. Mishra, M. Khare, S.K. Gautam, Precipitate based selective ion sensitive membrane electrodes for dipositive cobalt and copper, J. Electrochem. Soc. India. 50 (2001) 119–121.
Google Scholar
[33]
S.K. Srivastava, V.K. Tewati, H. Vardhana, An Inorganic gel membrane sensor for cadmium ions, Indian J. Chem. 34A (1995) 625–629.
Google Scholar
[34]
A.A. Khan, Inamuddin, M.M. Alam, Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: Polypyrrole thorium (IV) phosphate, React. Funct. Polym. 63 (2005) 119–133.
DOI: 10.1016/j.reactfunctpolym.2005.02.001
Google Scholar
[35]
A.A. Khan, M.M. Alam, Synthesis, characterization and analytical applications of a new and novel organic–inorganic, composite material as a cation-exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn (IV) tungstoarsenate, React. Funct. Polym. 55 (2003).
DOI: 10.1016/s1381-5148(03)00018-x
Google Scholar
[36]
A.A. Khan, M.M. Alam, New and novel organic–inorganic type crystalline polypyrrolel/ polyantimonic acid, composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg (II) ion-selective membrane electrode, Anal. Chim. Acta. 504 (2004).
DOI: 10.1016/j.aca.2003.10.054
Google Scholar
[37]
N.E. Fedorovich, E. Kuipers, D. Gawlitta, W.J. Dhert, J. Alblas, Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors, Tissue Eng., Part A. 17 (2011) 2473–86.
DOI: 10.1089/ten.tea.2011.0001
Google Scholar
[38]
T. Billiet, M. Vandenhaute, J. Schelfhout, S. V. Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering, Biomaterials. 33 (2012) 6020–41.
DOI: 10.1016/j.biomaterials.2012.04.050
Google Scholar
[39]
J.H. Shim, J.S. Lee, J.Y. Kim, D.W. Cho, Bio printing of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system, J. Micromech. Microeng. 22 (2012).
DOI: 10.1088/0960-1317/22/8/085014
Google Scholar
[40]
F.P. Melchels, M.A. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, D.W. Hutmacher, Additive manufacturing of tissues and organs, Prog. Polym. Sci. 37 (2012) 1079–4.
DOI: 10.1016/j.progpolymsci.2011.11.007
Google Scholar
[41]
E. Boanini, A. Bigi, Biomimetic gelatin–octacalcium phosphate core–shell microspheres, J. Colloid Interface Sci. 362 (2011) 594– 9.
DOI: 10.1016/j.jcis.2011.06.061
Google Scholar
[42]
A. Bigi, S. Panzavolta, K. Rubini, Relationship between triple-helix content and mechanical properties of gelatin films, Biomaterials. 25 (2004) 5675–80.
DOI: 10.1016/j.biomaterials.2004.01.033
Google Scholar
[43]
S.B. Ross-Murphy, Structure and rheology of gelatin gels: recent progress, Polymer. 33 (1992) 2622-7.
DOI: 10.1016/0032-3861(92)91146-s
Google Scholar
[44]
Z.M. Siddiqi, D. Pathania, Titanium (IV) tungstosilicate and titanium (IV) tungstophosphate: two new inorganic ion exchangers, J. Chromatogr. A. 987 (2003) 147–158.
DOI: 10.1016/s0021-9673(02)01659-x
Google Scholar
[45]
Z.A. AL-Othman, Mu. Naushad, Inamuddin, Organic–inorganic type composite cation exchanger poly-o-toluidine Zr (IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals, Chem. Eng. J. 172 (2011).
DOI: 10.1016/j.cej.2011.06.018
Google Scholar
[46]
D. Pathania, G. Sharma, M. Naushad, A. Kumar, Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce (IV) silicophosphate: photocatalytic and antimicrobial applications, J. Ind. Eng. Chem. 20 (2014) 3596–3603.
DOI: 10.1016/j.jiec.2013.12.054
Google Scholar
[47]
G. Sharma, D. Pathania, M. Naushad, Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium (IV) selenotungstophosphate for the separation of toxic metal ions, Ionics. 21.4 (2015) 1045-1055.
DOI: 10.1007/s11581-014-1269-y
Google Scholar
[48]
C.J. Coetzee, A.J. Benson, A cesium-sensitive electrode, Anal. Chim. Acta 57 (1971) 478–480.
Google Scholar
[49]
A. Craggs, G.J. Moody, J.D.R. Thomas, PVC matrix membranes ionselective electrodes. Construction and laboratory experiments, J. Chem. Educ. 51 (1974) 541–544.
DOI: 10.1021/ed051p541
Google Scholar
[50]
S. Kaushal, R. Badru, S. Kumar, S.K. Mittal, P. Singh, Fabrication of a mercury (II) ion selective electrode based on poly-o-toluidine–zirconium phosphoborate, RSC Advances. 6 (2016) 3150-3158.
DOI: 10.1039/c5ra23284h
Google Scholar
[51]
A.A. Khan, Applications of Hg (II) sensitive polyaniline Sn (IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode, Sens Actuators B Chem. 120 (2006) 10-18.
DOI: 10.1016/j.snb.2006.01.033
Google Scholar
[52]
M. K. Amini, M. Mazloum, A. A. Ensaf, Lead selective membrane electrode using cryptand (222) neutral carrier, Fresenius J. Anal. Chem. 364 (1999) 690-693.
DOI: 10.1007/s002160051415
Google Scholar
[53]
A. Demirel, A. Dogan, E. Canel, S. Memon, M. Yilmaz, E. Kilic, Hydrogen ion-selective poly (vinyl chloride) membrane electrode based on a p-tert-butylcalix.
DOI: 10.1016/s0039-9140(03)00414-4
Google Scholar
[4]
arene-oxacrown-4, Talanta. 62 (2004) 123–129.
Google Scholar
[54]
A.A. Khan, M.M. Alam, Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: Polypyrrole thorium (IV) phosphate, React. Funct. Polym. 63 (2005) 119-133.
DOI: 10.1016/j.reactfunctpolym.2005.02.001
Google Scholar
[55]
G. Sharma, V.K. Gupta, S. Agarwal, A. Kumar, S. Thakur, D. Pathania, Fabrication and characterization of Fe@ MoPO nanoparticles: Ion exchange behavior and photocatalytic activity against malachite green. J. Mol. Liq. 219 (2016) 1137-1143.
DOI: 10.1016/j.molliq.2016.04.046
Google Scholar
[56]
D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala'a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 87 (2016) 366-374.
DOI: 10.1016/j.ijbiomac.2016.02.073
Google Scholar
[57]
A. Mittal, M. Naushad, G. Sharma, Z.A. AL-Othman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb (II) metal from aqueous medium. Desalination Water Treat. 57 (2016) 21863-21869.
DOI: 10.1080/19443994.2015.1125805
Google Scholar
[58]
G. Sharma, D. Pathania, M. Naushad, Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium (IV) selenotungstophosphate for the separation of toxic metal ions. Ionics. 21 (2015) 1045-1055.
DOI: 10.1007/s11581-014-1269-y
Google Scholar
[59]
V.K. Gupta, S. Agarwal, I. Tyagi, D. Pathania, B.S. Rathore, G. Sharma, Synthesis, characterization and analytical application of cellulose acetate-tin (IV) molybdate nanocomposite ion exchanger: binary separation of heavy metal ions and antimicrobial activity. Ionics. 21 (2015).
DOI: 10.1007/s11581-015-1368-4
Google Scholar
[60]
G. Sharma, A. Kumar, M. Naushad, A. Kumar, A.a.H. Al-Muhtaseb, P. Dhiman, A.A. Ghfar, F.J. Stadler, M.R. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites, J. Clean. Prod. 172 (2018).
DOI: 10.1016/j.jclepro.2017.11.122
Google Scholar
[61]
A. Kumar, A. Kumar, G. Sharma, A.a.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chem. Eng. J. 334 (2018).
DOI: 10.1016/j.cej.2017.10.049
Google Scholar
[62]
G. Sharma, D. Kumar, A. Kumar, A.a.H. Al-Muhtaseb, D. Pathania, M. Naushad, G.T. Mola, Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review, Mater. Sci. Eng., C. 71 (2017).
DOI: 10.1016/j.msec.2016.11.002
Google Scholar
[63]
G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, M.R. Khan, S. Kalia, Shweta, M. Bala, A. Sharma, Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium, Int. J. Biol. Macromol. 95 (2017).
DOI: 10.1016/j.ijbiomac.2016.11.072
Google Scholar
[64]
M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity, Colloids Surf., B Biointerfaces. 157 (2017).
DOI: 10.1016/j.colsurfb.2017.06.018
Google Scholar