Development and Physico-Chemical Characterization of Conducting Polymeric Zirconium Based Advanced Nanocomposite Ion-Exchangers for Environmental Remediation

Article Preview

Abstract:

Polyaniline-Zr(IV) tungstovanadate and Polyaniline-Zirconium oxide nanocomposite ion -exchangers were synthesized and physico-chemical characterization done by FT-IR-UV spectral studies, XRD, SEM and TGA. These composites are having high mechanical strength, good electrical conductivity and stability than their individual components. The organic polymeric component of the composites provides mechanical as well as chemical stability whereas the inorganic component supports the ion-exchange behavior and thermal stability. Both the inorganic and organic parts are jointly responsible for their improved electrical conductivity. They have more promising ion exchange capacity towards alkali metal halides and have selective adsorption towards Pb(II) ion and these can be used as powerful candidates for water softening

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-148

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.Preetha, B.C .Janardanan, Ion exchange characteristics of newly synthesized cerium zirconium phosphotungstate and its analytical applications, Res.J.chem.sci. 4 (2014) 43-51.

Google Scholar

[2] A.A Khan, M.M. Inamuddin Alam, Thermal stability and electrical properties of conducting polymer based'polymeric–inorganic' composites: Poly-o-anisidine and poly-o-toluidine Sn(IV)tungstate, Mat. Res. Bull. 47(2012) 4414-4419.

DOI: 10.1016/j.materresbull.2012.09.039

Google Scholar

[3] G.Sharma, D.Pathania, M.Naushad, N.C. Kothiyal, Fabrication, characterizatioand antimicrobial activity of polyanilineTh(IV) tungstomolybdophosphate material efficient removal of toxic metal ions from water, Chem. Eng. J. 251(2014) 413–421.

DOI: 10.1016/j.cej.2014.04.074

Google Scholar

[4] B.S. Rathore, G. Sharma, D.Pathania, D.Photocatalytic activity of cellulose acetate –tin(IV) molybdate nanocomposite in solar light, SMC Bulletin. 4(2013) 11-16.

Google Scholar

[5] A.A. Khan, R.Niwas, M.M Alam, Ion exchange kinetics on styrene supported Zirconium (IV) tungstophosphate: An organic-inorganic type of cation exchanger, Ind. J. Chem. Technol. 9(2002) 256-260.

Google Scholar

[6] B.Pandit, B.Chudasma, Synthesis, characterization and application of an inorgano organic material: p-chlorophenol anchored onto zirconium tungstate, Bull. Materials. Sci. 24(2001) 265-271.

DOI: 10.1007/bf02704920

Google Scholar

[7] K.G Varshney, A.H Pandith, Synthesis and ion exchange behavior of acrylonitrile-based zirconium phosphate-A new hybrid cation exchange, J.Ind. Chem. Soc. 78(2001) 250-253.

Google Scholar

[8] A.H. Pandit, K.G. Varshney, Thermodynamics of the Na(I)–H(I), K(I)–H(I) and Ca(II)–H(I) exchanges on zirconium(IV) aluminophosphate cation exchanger, Colloids Surf., A.201 (2002) 1-7.

DOI: 10.1016/s0927-7757(01)01037-8

Google Scholar

[9] G. Sharma, B. Thakur, M. Naushad, A.a.H. Al-Muhtaseb, A. Kumar, M. Sillanpaa, G.T. Mola, Fabrication and characterization of sodium dodecyl sulphate@ironsilicophosphate nanocomposite: Ion exchange properties and selectivity for binary metal ions, Materials Chemistry and Physics, 193 (2017).

DOI: 10.1016/j.matchemphys.2017.02.010

Google Scholar

[10] Z.A.AL-othman, Inamudin.M. Naushad, Determination of ion exchange kinetic parameters for the poly-o-methoxyaniline Zr(IV)molybdate composite cation- exchanger, Chem. Eng. J. 166 (2011)639–645.

DOI: 10.1016/j.cej.2010.11.036

Google Scholar

[11] A.A. Khan, M.M. Alam, Synthesis, characterization and analytical applications of a new and novel organic–inorganic, composite material as a cation exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn(IV) tungstoarsenate, React.Funct. Polym. 55 (2003).

DOI: 10.1016/s1381-5148(03)00018-x

Google Scholar

[12] A.A. Khan, Inamuddin, Preparation, physico-chemical characterization analytical applications and electrical conductivity measurement studies of an organic inorganic, composite cation-exchanger: PolyanilineSn (IV) phosphate, React. Funct. Polym, 66 (2006).

DOI: 10.1016/j.reactfunctpolym.2006.06.007

Google Scholar

[13] A.A. Khan, Synthesis, characterization and electrical conductivity measurement studies of poly‐o‐anisidine Sn(IV)phosphate (POASn(IV)P) nano‐ composite cation‐exchange material, Mat. Sci. Eng. B. 158(2009) 92-97.

DOI: 10.1016/j.mseb.2009.01.024

Google Scholar

[14] A.A Khan, T.Akhtar, Ion exchange kinetics and electrical conductivity studies of polyaniline Sn(IV) tungstoarsenate; (SnO2)(WO3)(As2O5)(-C6H5- NH-)2 nH2O: a new semicrystaline polymeric-inorganic, composite cation exchange material, Electrochim. Acta. 48(2003).

DOI: 10.1016/s0013-4686(03)00272-x

Google Scholar

[15] Z.Alam, Inamuddin, S.A Nabi, Synthesis and characterization of thermally stable strongly acidic Cd(II) ion selective composite cation- exchanger: polyaniline Ce(IV) molybdate, Desalination. 250 (2010) 515-522.

DOI: 10.1016/j.desal.2008.09.008

Google Scholar

[16] G. Sharma, M. Naushad, A. Kumar, S. Devi, Mohammad Rizwan Khan, Lanthanum/Cadmium/Polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant, Iranian Polymer Journal, 24 (2015) 1003-1013.

DOI: 10.1007/s13726-015-0388-2

Google Scholar

[17] A.A. Khan, L. Paquiza, An advanced nano-composite cation exchanger polypyrrole zirconium titanium phosphate as a Th(IV)-selective potentiometric sensor: preparation, characterization and its analytical application, J.Mat. Sci. 45(2010) 3610–3625.

DOI: 10.1007/s10853-010-4407-6

Google Scholar

[18] A.A. Khan, T. Akhtar, Preparation, physicochemical characterization and electrical conductivity measurement studies of an organic-inorganic nano-composite cation-exchanger: poly-o-toluidine Zr(IV) phosphate, Electrochim. Acta. 53(2008) 5540-5547.

DOI: 10.1016/j.electacta.2008.03.002

Google Scholar

[19] A.A Khan, T. Khtar, Adsorption Thermodynamic studies of trichlorophenoxy acetic acid on poly-o-toluidine Zr(IV) phosphate, a nano- composite used as pesticide sensitive membrane electrode, Desalination. 272(2011) 259-264.

DOI: 10.1016/j.desal.2011.01.033

Google Scholar

[20] E Nobutaka, T.Yukari, M.Koji, H.; Mitsuru, Separation and concentration of trace ion with polyaniline, Anal Sci. 17(2001) i1109-i1112.

Google Scholar

[21] T.A. Salehand, V.K. Gupta, Column with CNT/magnesium oxide composite for lead(II) removal from water, Environ. Sci. Pollut. R. 19 (2012) 1224–1228.

DOI: 10.1007/s11356-011-0670-6

Google Scholar

[22] S.A; Nabi, M. Naushad, R.Bushra, A new hybrid EDTA zirconium phosphate cation exchanger: Synthesis, characterization and adsorption behavior for environmental monitoring, Adsorpt. Sci Technol. 27(2009) 423–437.

DOI: 10.1260/026361709790252641

Google Scholar

[23] V.K Gupta, I Ali, T.A .Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for wastewater recycling—a review, RSC Adv. 2(2012)6380–6388.

DOI: 10.1039/c2ra20340e

Google Scholar

[24] V. K. Gupta, D.S. Pathania, N.C Kothiyal , G. Sharma, Use of pectin–thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue, Carbohydr. Polym.103(2013) 277–283.

DOI: 10.1016/j.carbpol.2013.03.073

Google Scholar

[25] G.Sharma, D.Pathania, M.Naushad, N.C. Kothiyal, Fabrication, characterizatioand antimicrobial activity of polyanilineTh(IV) tungstomolybdophosphate material efficient removal of toxic metal ions from water, Chem. Eng. J. 251(2014) 413–421.

DOI: 10.1016/j.cej.2014.04.074

Google Scholar

[26] A.A Khan, L.Paquiza, Characterization and ion-exchange behavior of thermal stable nano-composite polyaniline zirconium titanium phosphate: its analytical application in separation of toxic metals, Desalination.265 (2011) 242–254.

DOI: 10.1016/j.desal.2010.07.058

Google Scholar

[27] V. K. Gupta, S.Agarwal. G.Sharma, D. Pathania, Nanocomposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system, J. Ind. Eng. Chem. Res.. 21 (2015).

DOI: 10.1016/j.jiec.2014.05.001

Google Scholar

[28] V. K.Gupta, T.A. Saleh, D.Pathania, B.S. Rathore, G.A Sharma, cellulose acetate based nanocomposite for photocatalytic degradation of methylene blue dye under solar light, Ionics. 21(2015)1787- 1793.

DOI: 10.1007/s11581-014-1323-9

Google Scholar

[29] G. Sharma, A. Kumar, Mu.Naushad, D.Pathania, M.Sillanpää. Polyacrylamide@Zr (IV) vanadophosphate nanocomposite: Ion exchange properties, antibacterial activity, and photocatalytic behavior, J. Ind. Eng. Chem. Res. 33(2016)201-208.

DOI: 10.1016/j.jiec.2015.10.011

Google Scholar

[30] M.F Elkady and Shokry , H .Hassan, Invention of Hollow Zirconium Tungesto-Vanadate at Nanotube Morphological Structure for Radionuclides and Heavy Metal Pollutants ,Decontamination from Aqueous Solutions,Nanoscale Res Lett. 10(2015) 474.

DOI: 10.1186/s11671-015-1180-0

Google Scholar

[31] B.P. Prasanna D.N. Avadhani H.B. Muralidhara,Synthesis of polyaniline / ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance, Bull Mater Sci. 39(2016) 667.

DOI: 10.1007/s12034-016-1196-9

Google Scholar

[32] A.P. Gupta, G.L. Verma G.L. S.Ikram, Studies on a new heteropolyacid-based inorganic ion exchanger; zirconium(IV) selenomolybdate, React. Funct Polym. 4 (2000)33.

DOI: 10.1016/s1381-5148(98)00091-1

Google Scholar

[33] N.E. Topp, K.W. Pepper, Properties of ion-exchange resins in relation to their structure. Part I. Titration curves, J.Chem soc. 690(1949), 3299–3303.

DOI: 10.1039/jr9490003299

Google Scholar

[34] Yanhou Geng, JiLi, Xiabin Jing, Fosong Wang ,Interaction of N-methylpyrrolidone with doped polyaniline Synth. Met, 84( 1997), 97-98.

DOI: 10.1109/stsm.1994.835258

Google Scholar

[35] S. K. Meher, G. R. Rao, Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications, J. Power Sources. 215 (2012)17.

DOI: 10.1016/j.jpowsour.2012.04.104

Google Scholar

[36] Maryam Abyazisani , Mohammad Mehdi, Bagheri-Mohagheghi , Mohammad Rez, Benam, Study of structural and optical properties of nanostructured V2O5 thin films doped with fluorine, Materials Science in Semiconductor Processing 31 (2015) 693–699.

DOI: 10.1016/j.mssp.2014.12.049

Google Scholar

[37] S.Aparna, N.Elakhya GayatriGopal P.Rajesh P.Ramasamy, Influence of polyaniline in polyaniline-tin oxide nanocomposite as counter electrode for dye sensitized solar cells,Optik,157(2018)1219-1226.

DOI: 10.1016/j.ijleo.2017.11.101

Google Scholar

[38] Salma Gul , Synthesis and Characterization of Processable Polyaniline Salts ,J. Phys.: Conf. Ser. 439,(2013) 012002.

DOI: 10.1088/1742-6596/439/1/012002

Google Scholar

[39] Lei X.L Wang, W.H.Wu, J.X.Xu, A.W.Xu, Stable, organic–inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment, Appl. Mat. and Interfaces. 4(2012) 2686–2692.

DOI: 10.1021/am300335e

Google Scholar

[40] V. K.Gupta, P. Rahman, N. Singh, , Synthesis, characterization, and analytical application of zirconium (IV) selenoiodate, a new cation exchanger, Anal.Bioanal.Chem.381(2005) 471-476.

DOI: 10.1007/s00216-004-2949-7

Google Scholar

[41] H. Huang., Preparation and Characterization of Conductive Polyaniline/Zirconia Nanoparticles Composites,, Advanced Materials Research, 221 (2011) pp.302-307.

DOI: 10.4028/www.scientific.net/amr.221.302

Google Scholar

[42] K. Jacinth Mispa, P. Subramaniam, and R. Murugesan Studies on Ion-Exchange Properties of Polyaniline Zr(IV) Tungstoiodophosphate Nanocomposite Ion Exchanger, Journal of Polymers 2013 (2013), 12.

DOI: 10.1155/2013/356058

Google Scholar

[43] J. P. Travers, J. Chroboczek, F. Devreux, and F. Genoud, Transport and magnetic resonance studies of polyaniline,, Molecular Crystals and Liquid Crystals, vol. 121, no. 1–4, p.195, (1985).

DOI: 10.1080/00268948508074861

Google Scholar

[44] B. Lundberg, W. R. Salaneck, and LundstromI, Pressure, temperature and field dependence of hopping conduction in polyaniline,, Synth. Met.,21 (1987) 143–147.

DOI: 10.1016/0379-6779(87)90078-6

Google Scholar

[45] W. S. Huang, A. G. Mac Diarmid, and A. J. Epstein, Polyaniline: non-oxidative doping of the emeraldine base form to the metallic regime,, Journal of the Chemical Society, Chemical Communications, 239(1987) 1784–1786.

DOI: 10.1039/c39870001784

Google Scholar

[46] W. W. Focke, G. E. Wnek, and Y. Wei, Influence of oxidation state, pH, and counterion on the conductivity of polyaniline,, Journal of Physical Chemistry, 91, (1987)5813–5818.

DOI: 10.1021/j100306a059

Google Scholar

[47] W. W. Focke and G. E. Wnek, Conduction mechanisms in polyaniline (emeraldine salt),, Journal of Electroanalytical Chemistry, 256(1988) 343–352.

DOI: 10.1016/0022-0728(88)87008-6

Google Scholar

[48] W. R. Salaneck, I. Lundstrom, W. S. Huang, and A. G. Mac Diarmid, A two-dimensional-surface "state diagram" for polyaniline,, Synth. Met. 13 (1986) 291–297.

DOI: 10.1016/0379-6779(86)90190-6

Google Scholar

[49] A.A Khan, Inamuddin, Preparation and characterization of a new organic–inorganic nano-composite poly-o-toluidine Th(IV) phosphate: Its analytical applications as cation-exchanger and in making ion-selective electrode, Talanta. 72 (2007) 699–710.

DOI: 10.1016/j.talanta.2006.11.044

Google Scholar

[50] A.Nilchi, B. Maalek, A. Khanchi, M. Ghanadi Maragheh, A. Bagheri , Cerium (IV) molybdate cation exchanger: Synthesis, properties and ion separation capabilities, Radiat. Phys .Chem. 75(2006) 301–308.

DOI: 10.1016/j.radphyschem.2005.07.003

Google Scholar

[51] A.A Khan, S.Shaheen, Preparations and characterizations of poly-o-toluidine/multiwalled carbon nanotubes/Sn(IV)tungstate composite ion exchange thin films and their application as a Pb(II) selective electrode, RSC Advances. 4(2014) 23456-23463.

DOI: 10.1039/c4ra01594k

Google Scholar

[52] H.P. Hentze, W.E. Kaler, Polymerization of and within self-organized media, Curr. Opin.Colloid Int. 8 (2003) 164-178.

DOI: 10.1016/s1359-0294(03)00018-9

Google Scholar

[53] D Pathania, G.Sharma, A.Kumar, N.C. Kothiyal, Fabrication of nanocomposite polyaniline Zr(IV)silicophosphate for photocatalytic and antimicrobial activity, Journal of Alloys and Compounds 588(2014) 668–675.

DOI: 10.1016/j.jallcom.2013.11.133

Google Scholar

[54] G.Sharma, D.Pathania, Mu.Naushad, Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics,21 (2015), 1054-1055.

DOI: 10.1007/s11581-014-1269-y

Google Scholar

[55] M.M Alam, Z.A Alotham, M.Nushad, Analytical and environmental applications ofpolyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite exchangers. Journal of Industrial and Engineering Chemistry ,19(2013) 1973–(1980).

DOI: 10.1016/j.jiec.2013.03.006

Google Scholar

[56] R.Bushra, M.Naushad, R.Adnan, Z.A,Alothman, M. Rafatullah, Polyaniline Supported nanocomposite cation exchanger: synthesis, characterization and applications for the efficient removal of Pb2+ ion from aqueous medium. Journal of Industrial and Engineering Chemistry 21 (2015).

DOI: 10.1016/j.jiec.2014.05.022

Google Scholar

[57] S.A. Nabi, A.Akhtar, M.D. Alam, M.A. Khan, Synthesis, characterization and electricalconductivity of polyaniline–Sn(IV) tungstophosphate composite cation exchanger:analytical application for removal of heavy metal ions from wastewater. Desalination, 340 (2014).

DOI: 10.1016/j.desal.2014.02.020

Google Scholar

[58] A.A. Khan, U.Baig, Electrically conductive membrane of polyaniline– titanium(IV)phosphate cation exchange nanocomposite: applicable for detection of Pb(II) using its ion-selective electrode. Journal of Industrial and Engineering Chemistry ,18(2012).

DOI: 10.1016/j.jiec.2012.05.008

Google Scholar

[59] A.A. Khan, U.Baig, M.Khalid, Electrically conductive membrane of polyaniline–titanium (IV) molybdophosphate cation exchange nanocomposite: synthesis, characterization and alcohol vapor sensing properties. Journal of Industrial and Engineering Chemistry,19 (2013).

DOI: 10.1016/j.jiec.2012.12.022

Google Scholar

[60] M.D.A. Khan, A.Akhtar, S.A. Nabi, M.Alam Khan, Synthesis, characterization and photocatalytic activity of polyaniline–Sn (IV) iodophosphate: its application in waste water detoxification. Industrial and Engineering Chemistry Research ,53(2014).

DOI: 10.1021/ie502804s

Google Scholar

[61] A Khan A.M. Asiri, M.A Rub, N.Azum, A.A.P. Khan, S.B. Khan, M.M .Rahman, I.Khan, Synthesis, characterization of silver nanoparticles embedded polyaniline tungstophosphate nanocomposite cation exchanger and its application for heavy metal selective membrane. Composites Part B: Engineering, 45 (2013).

DOI: 10.1016/j.compositesb.2012.09.023

Google Scholar

[62] R.Bushra, M.Shahadat, A.Ahmed, S.A. Nabi, K.Umar, M.Oves, A.S. Raeissi M.Muneer, Synthesis, characterization, antimicrobial activity and applications of polyaniline Ti(IV) arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. Journal of Hazardous Materials ,264(2014).

DOI: 10.1016/j.jhazmat.2013.09.044

Google Scholar

[63] A.A. Khan,L. Paquiza, Synthesis, characterization and conducting behavior of heavymetal sensitive polyaniline–Zr(IV)tungstoiodophosphate nanocomposite. Industrial and Engineering Chemistry research, 22 (2015) 208–216.

DOI: 10.1016/j.jiec.2014.07.012

Google Scholar

[64] A.A. Khan, S.Shaheen, Preparation, characterization and kinetics of ion exchangestudies of Ni2+ selective polyaniline–Zr(IV)molybdophosphate nanocomposite cationexchanger. Journal of Industrial and Chemical Engineering , 26 (2015) 157–166.

DOI: 10.1016/j.jiec.2014.11.028

Google Scholar

[65] A.A Khan, L. Paquiza, L. Determination of ion exchange kinetic parameters for the conducting nanocomposite polyaniline Zr(IV)titanium phosphate. Synth. Met. 190 (2014) 66–71.

DOI: 10.1016/j.synthmet.2014.02.001

Google Scholar

[66] S.A. Nabi, M.Shahadat, R.Bushra, A.H. Shalla, A.Azam, Synthesis and Characterization of nanocomposite ion exchanger; its adsorption behavior, Colloids and Surfaces B: Biointerfaces 87 (2011) 122–128.

DOI: 10.1016/j.colsurfb.2011.05.011

Google Scholar

[67] T.M Suzuki, J. Bomani, H. Matsunaga, T.Yokoyama, Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic, React. Funct. Polym. 43(2000) 165-172.

DOI: 10.1016/s1381-5148(99)00038-3

Google Scholar

[68] A.Dyer, M.Shaheen, Tahira, Zamin, Mohammad, Ion exchange of strontium and caesium into amorphous zirconium phosphates, J. Mat. Chem. 7(1997) 1895-1899.

DOI: 10.1039/a701809f

Google Scholar

[69] K.G. Varshney, A.H. Pandith, U.Gupta, Forward and reverse ion-exchange kinetics for some alkali and alkaline earth metal ions on amorphous zirconium(IV) aluminophosphate, Langmuir.15( 1999) 7422-7425.

DOI: 10.1021/la990009i

Google Scholar

[70] A.A. Khan, S.Shaheen, U.Habiba, Synthesis and characterization of poly-o-anisidine Sn(IV)tungstate: A new and novel organic–inorganic,nano-composite material and its electro-analyticalapplications as Hg (II) ion-selective membrane electrode, J.adv. res. 3(2012).

DOI: 10.1016/j.jare.2011.09.002

Google Scholar

[71] A.A. Khan, R.Niwas, K.G. Varshney, Preparation and properties of styrene supported zirconium(IV) tungstophosphate: a Hg(II) selective inorganic-organic ion exchangers, Ind. J.Chem.37A(1998), 464-472.

Google Scholar

[72] G.Alberti, Inorganic Ion Exchange Materials, eds. Clearfield, A., CRC Press Inc., Boca Raton. FL, (1982).

DOI: 10.1080/07366298408918440

Google Scholar

[73] F.C. Nachod, W.Wood, The reaction velocity of ion exchange,J. Amer. Chem. Soc.66(1944) 1380-1384.

DOI: 10.1021/ja01236a050

Google Scholar

[74] M.M. Abd, El-Latif, M.F.El-Kady, Developing & Characterization of a New Zirconium Vanadate Ion Exchanger and Its Novel Organic- Inorganic Hybrid, J. Appl. Sci. Res. 4(2008) 1-13.

Google Scholar

[75] A.A. Khan, T.Akhtar, Preparation, physic-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nanocomposote cation exchanger: poly-O-Toluidine Zr(IV) phosphate, Electrochim. Acta. 53(2008) 5540-5548.

DOI: 10.1016/j.electacta.2008.03.002

Google Scholar

[76] A.A. Khan, Inamuddin, M.Mezbaul Alam, Preparation, characterization and Analytical applications of a new and novel electrically conducting fibrous type Polymeric– inorganic composite material: polypyrrole Th(IV) phosphate used as a cation-exchanger and Pb(II) ion-selective membrane electrode, Mat. Res. Bull. 40(2005).

DOI: 10.1016/j.materresbull.2004.10.014

Google Scholar

[77] V.K Gupta, S. Agarwal, I. Tyagi, D. Pathania, Rathore, B.S. G.Sharma, Synthesis, characterization and analytical application of cellulose acetate-tin (IV) molybdate nanocomposite ion exchanger: binary separation of heavy metal ions and antimicrobial activity, Ionics. 21(2015).

DOI: 10.1007/s11581-015-1368-4

Google Scholar

[78] Vogel's Text Book of Quantitative Chemical Analysis, Fifth ed., Longman, London, UK, 1978, p.201.

Google Scholar