Role of Nanocomposites in Agriculture

Article Preview

Abstract:

Nanotechnology has gained interest due to their wide applications. Nanocomposites are used in energy storage, water treatment, disease diagnosis, drug delivery system, food processing, health monitoring, pest detection and control, agricultural productivity and enhancement. In the present era, bulk use of chemical fertilizers and pesticides results loss in soil diversity and developed resistance against pathogens and pests. In the present chapter, we reviewed the role of nanocomposites in agriculture to reduce the burden of fertilizers and pesticides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-89

Citation:

Online since:

April 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.B. Manjunatha, D.P. Biradar and Y.R. Aladakatti, Nanotechnology and its applications in agriculture: A review. J. Farm Sci. 29 (2016) 1-13.

Google Scholar

[2] M.N. Thakkar, S. Mhatre and R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanotechol. Biol. Med. 6 (2010) 257–262.

Google Scholar

[3] P. Solanki, A. Bhargava, H. Chhipa, N. Jain and J. Panwar, Nano-fertilizers and their smart delivery dsystem. In: M. Rai, C. Ribeiro, L. Mattoso, N. Duran (Eds.), Nanotechnologies in Food and Agriculture, Springer, Switzerland, 2015, pp.81-101.

DOI: 10.1007/978-3-319-14024-7_4

Google Scholar

[4] J.S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra and S. Duhan. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 15 (2017) 11–23.

DOI: 10.1016/j.btre.2017.03.002

Google Scholar

[5] H.X. Cui, C. Sun, Q. Liu, J. Jiang and W. Gu, Applications of nanotechnology in agrochemical formulation: perspectives, challenges and strategies, In: C. Ribeiro, O.B. Garrido De Assis, L.H.C. Mattoso, S. Mascarenhas (Eds.), International conference on food and agriculture- Applications of Nanotechnologies, Sao Pedro, Brazil, 2010, pp.28-33.

Google Scholar

[6] P.H.C. Camargo, K.G. Satyanarayana and F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mat. Res. 12 (2009) 1-39.

DOI: 10.1590/s1516-14392009000100002

Google Scholar

[7] D.K. Tripathi, A. Tripathi, Shweta, S. Singh, Y. Singh, K. Vishwakarma, G. Yadav, S. Sharma, V.K. Singh, R.K. Mishra, R.G. Upadhyay, N.K. Dubey, Y. Lee and D.K. Chauhan, Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review, Front. Microbial. 8 (2017).

DOI: 10.3389/fmicb.2017.00007

Google Scholar

[8] A.K. Saini, H. Gupta, A.M. Poswal, R. Kumari, R. Kumar and R.V. Saini, Biological traits of nanocomposites: Nanofertilizers, nanopesticides, anticancer and antimicrobials, in: D. Pathania, G. Sharma, A. Kumar (Eds.), Modified Biopolymers: Challenges and Opportunities, Nova Science Publishers, New York, 2017, pp.189-206.

Google Scholar

[9] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology. 16 (2005) 2346–2353.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[10] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim and J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52 (2000) 662–668.

DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

Google Scholar

[11] K. Xing, X. Zhu, X. Peng and S. Qin, Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron. Sustain. Dev. 35 (2015) 569–588.

DOI: 10.1007/s13593-014-0252-3

Google Scholar

[12] Y.Q. Yang, S.Y. Han, Q.Q. Fan and S.C. Uqbolue, Nanoclay and modified nanoclay as sorbents for anionic, cationic and nonionic dyes. Text Res J. 75 (2005) 622-626.

DOI: 10.1177/0040517505053948

Google Scholar

[13] S. Li, H. Zhang, J. Feng, R. Xu, and X. Liu, Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Nanocomposites - New Trends and Developments. 280 (2011).

DOI: 10.1016/j.desal.2011.06.056

Google Scholar

[14] L. Janovak, J. Varga, L. Kemeny and I. Dekany, Swelling properties of copolymer hydrogels in the presence of montmorillonite and alkylammonium montmoril‐ lonite. Applied clay science. 42 (2009) 260-270.

DOI: 10.1016/j.clay.2008.08.002

Google Scholar

[15] M. Kurecic and M.S. Smole, Polymer Nanocomposite Hydrogels for Water Purification. Nanocomposites - New Trends and Developments. Chapter 7, 161-185.

DOI: 10.5772/51055

Google Scholar

[16] J. Akhter, K. Mahmood, K.A. Malik, A. Mardan, M. Ahmad and M.M. Iqbal, Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ. 50 (2004) 463–469.

DOI: 10.17221/4059-pse

Google Scholar

[17] R. Vundavalli, S. Vundavalli, M. Nakka, S. Rao. Biodegradable nano-hydrogels in agricultural farming - alternative source for water resources. Procedia Materials Sci. 10 (2015) 548 – 554.

DOI: 10.1016/j.mspro.2015.06.005

Google Scholar

[18] G. Cannazza, A. Cataldo, E.D. Benedetto, C. Demitri, M. Madaghiele and A. Sannino, Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization of water consumption in agricultural irrigation process. Water. 6 (2014).

DOI: 10.3390/w6072056

Google Scholar

[19] F.F. Montesano, A. Parente, P. Santamaria, A. Sannino and F. Serio, Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Procedia 4 (2015) 451 – 458.

DOI: 10.1016/j.aaspro.2015.03.052

Google Scholar

[20] Pallavi, C.M. Mehta, R. Srivastava, S. Arora and A.K. Sharma, Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity, 3 Biotech. 6 (2016) 1-10.

DOI: 10.1007/s13205-016-0567-7

Google Scholar

[21] B. Asadishad, S. Chahal, V. Cianciarelli, K. Zhou and N. Tufenkji, Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ. Sci.: Nano. 4 (2017).

DOI: 10.1039/c6en00567e

Google Scholar

[22] A. Varma, Uma and M. Khanuja, Role of Nanoparticles on plant growth with special emphasis on Piriformospora indica: A Review. In: M. Ghorbanpour, M. Khanuja, A. Varma (Eds.), Nanoscience and Plant soil Systems, 2017, pp.387-403.

DOI: 10.1007/978-3-319-46835-8_14

Google Scholar

[23] S. Mishra, B.R. Singh, A.H. Naqvi and H.B. Singh, Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens, Sci. Rep. 7 (2017) 1-15.

DOI: 10.1038/srep45154

Google Scholar

[24] S. Mishra, B.R. Singh, A. Singh, C. Keswani, A.H. Naqvi and H.B. Singh, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS one. 9 (2014) 1-11.

DOI: 10.1371/journal.pone.0097881

Google Scholar

[25] L.E. Tejeda, F. Malpartida, A. Esteban-Cubillo, C. Pecharroman and J.S. Moya, Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology. 20 (2009) 1-6.

DOI: 10.1088/0957-4484/20/50/505701

Google Scholar

[26] R.C. Kasana, N.R. Panwar, R.K. Kaul and P. Kumar, Copper Nanoparticles in Agriculture: Biological Synthesis and Antimicrobial Activity. Nanoscience in Food and Agriculture 3. 23 (2016) 129-143.

DOI: 10.1007/978-3-319-48009-1_5

Google Scholar

[27] L. He, Y. Liu, A. Mustapha and M. Lin, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166 (2011) 207-215.

DOI: 10.1016/j.micres.2010.03.003

Google Scholar

[28] D. Lin and B. Xing, Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut. 150 (2007) 243-250.

DOI: 10.1016/j.envpol.2007.01.016

Google Scholar

[29] L. Zhao, Y. Sun, J.A. Hernandez-Viezcas, A.D. Servin, J. Hong, G. Niu, J.R. Peralta-Videa, M. Duarte-Gardea and J.L. Gardea-Torresdey, Influence of CeO2 and ZnO Nanoparticles on Cucumber Physiological Markers and Bioaccumulation of Ce and Zn: A Life Cycle Study. J. Agric. Food Chem. 61 (2013).

DOI: 10.1021/jf404328e

Google Scholar

[30] M.L. López-Moreno, G.D.L. Rosa, J.A. Hernández-Viezcas, J.R. Peralta-Videa and J.L. Gardea-Torresdey, X-ray Absorption Spectroscopy (XAS) Corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58 (2010).

DOI: 10.1021/jf904472e

Google Scholar

[31] F. Yang, C. Liu, F. Gao, M. Su, X. Wu, L. Zheng, F. Hong and P. Yang, The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119 (2007) 77-88.

DOI: 10.1007/s12011-007-0046-4

Google Scholar

[32] H. Feizi, P.R. Moghaddam, N. Shahtahmassebi and A. Fotovat, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace. Elem. Res. 146 (2012) 101-106.

DOI: 10.1007/s12011-011-9222-7

Google Scholar

[33] A.E.R. El-Shanshoury, S.E. Elsilk and M.E. Ebeid, Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. Nanotechnology. 10 (2011).

DOI: 10.5402/2011/385480

Google Scholar

[34] M. Kumari, A. Mukherjee and N. Chandrasekaran. Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 407 (2009) 5243-5246.

DOI: 10.1016/j.scitotenv.2009.06.024

Google Scholar

[35] Q.B. Ngo, T.H. Dao, H.C. Nguyen, X.T. Tran, T.V. Nguyen, T.D. Khuu and T.H. Huynh, Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv. Nat. Sci: Nanosci. Nanotechnol. 5 (2014).

DOI: 10.1088/2043-6262/5/1/015016

Google Scholar

[36] W.M. Lee, Y.J. An, H. Yoon and H.S. Kweon, Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27 (2008).

DOI: 10.1897/07-481.1

Google Scholar

[37] A. Riahi-Madvar, F. Rezaee and V. Jalali, Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran. J. Plant Physiol. 3 (2012) 595–603.

Google Scholar

[38] L. Yang and D.J. Watts, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 158 (2005) 122-32.

DOI: 10.1016/j.toxlet.2005.03.003

Google Scholar

[39] H. Chai, J. Yao, J. Sun, C. Zhang, W. Liu, M. Zhu and B. Ceccanti, The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ. Contam. Toxicol. 94 (2015) 490-495.

DOI: 10.1007/s00128-015-1485-9

Google Scholar