[1]
H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, Journal of Non-Crystalline Solids. 352 (2006) 851-858.
DOI: 10.1016/j.jnoncrysol.2006.01.073
Google Scholar
[2]
M. Batzill, U. Diebold, The surface and materials science of tin oxide [Text], Progress in Surface Science. 79 (2005) 47–154.
DOI: 10.1016/j.progsurf.2005.09.002
Google Scholar
[3]
J.H. Lee, K.H. Ko, B.O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol-gel method, Journal of crystal growth. 247 (2003) 119-125.
DOI: 10.1016/s0022-0248(02)01907-3
Google Scholar
[4]
I.A. Pronin, Upravlyaemyj sintez gazochuvstvitel'nyh plenok dioksida olova, poluchennyh metodom zol'-gel'-tekhnologii [Tekst], Molodoj uchenyj, 2012, pp.57-60.
Google Scholar
[5]
B. Stjerna, C. G. Granqvist, Optical and electrical properties of SnOx thin films made by reactive R.F. magnetron sputtering [Text], Thin Solid Films. 193/194 (1990) 704-711.
DOI: 10.1016/0040-6090(90)90222-y
Google Scholar
[6]
N.D. YAkushova, Metody sinteza plenok modificirovannogo dioksida olova i ih sensornye svojstva [Tekst], Molodoj uchenyj, 2 (2013) 9-14.
Google Scholar
[7]
E. M. Loredana, E. I. Florentina, The automatized systems for spray pyrolysis deposition, Annals of the Oradea University, Fascicle of Management and Technological Engineering, 7 (2008) 17.
Google Scholar
[8]
M. Chitra, ZnO/SnO2/Zn2SnO4 nanocomposite: preparation and characterization for gas sensing applications, NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 7 (2016) 707–710.
DOI: 10.17586/2220-8054-2016-7-4-707-710
Google Scholar
[9]
N. Kamarulzaman, Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials, Nanoscale Res Lett. 10 (2015) 346.
DOI: 10.1186/s11671-015-1034-9
Google Scholar
[10]
O. Mounkachi, Band-gap engineering of SnO2, Solar Energy Materials and Solar Cells, 148 (2016) 34-38.
Google Scholar