Metal Phthalocyanine Modified Multi Walled Carbon Nanotubes; DC-Conductivity and Optical Properties

Article Preview

Abstract:

Hybrid materials of multi walled carbon nanotubes-zinc phthalocyanine (MWCNTs-ZnPc) and multi walled carbon nanotubes-aluminum phthalocyanine (MWCNTs-AlPc) have been prepared. MWCNTs were treated with mixture of nitric and sulfuric acid pre to the mixing with phthalocyanines for the de-bundling effect. Hybrid materials have been drop casted onto glass slides and interdigitated electrodes from their solution in dimethylformamide. UV-visible absorption spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) have revealed the successful hybridization due π-π interaction between MWCNTs and phthalocyanine species. I-V measurements and DC conductivity of the hybrid films has been investigated. The behavior of DC electrical conductivity and the activation energy with the variation of temperature were studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-36

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.M. McEvoy, J.W. Long, T.J. Smith, K.J. Stevenson, Nanoscale conductivity mapping of hybrid nanoarchitectures: Ultrathin poly(o-phenylenediamine) on mesoporous manganese oxide ambigels, Langmuir. 22 (2006) 4462-4466.

DOI: 10.1021/la052571g

Google Scholar

[2] H. Banimuslem, A. Hassan, T. Basova, M. Durmus, S. Tuncel, A.A. Esenpınar, A.G. Gürek, V. Ahsen, Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Films for Optical Detection, J. Nanosci. Nanotechnol. 15 (2015) 2157-2167.

DOI: 10.1166/jnn.2015.8845

Google Scholar

[3] V. Parra, M. Rei Vilar, N. Battaglini, A.M. Ferraria, A.M.B. Do Rego, S. Boufi, M.L. Rodríguez- Méndez, E. Fonavs, I. Muzikante, M. Bouvet, New hybrid films based on cellulose and hydroxygallium phthalocyanine. Synergetic effects in the structure and properties, Langmuir. 23 (2007) 3712-3722.

DOI: 10.1021/la063114i

Google Scholar

[4] H. Banimuslem, A. Hassan, T. Basova, A.A. Esenpınar, S. Tuncel, M. Durmuş, A.G. Gürek, V.Ahsen, Dye-modified carbon nanotubes for the optical detection of amines vapours, Sensors Actuators B: Chem. 207 (2015) 224–234.

DOI: 10.1016/j.snb.2014.10.046

Google Scholar

[5] H. Banimuslem, A. Hassan, T. Basova, I. Yushina, M. Durmuş, S. Tuncel, A.A. Esenpınar, A.G. Gürek, V. Ahsen, Copper phthalocyanine functionalized single-walled carbon nanotubes: thin film deposition and sensing properties, Key Eng. Mater. 605 (2014) 461-464.

DOI: 10.4028/www.scientific.net/kem.605.461

Google Scholar

[6] H. Banimuslem, A. Hassan, T. Basova, A.D. Gülmez, S. Tuncel, M. Durmus, A.G. Gürek, V. Ahsen, Copper phthalocyanine/single walled carbon nanotubes hybrid thin films for pentachlorophenol detection, Sensors Actuators B: Chem. 190 (2014) 990-998.

DOI: 10.1016/j.snb.2013.09.059

Google Scholar

[7] E.N. Kaya, S. Tuncel, T.V. Basova, H. Banimuslem, A. Hassan, A.G. Gürek, V. Ahsen, M. Durmuş, Effect of pyrene substitution on the formation and sensor properties of phthalocyanine-single walled carbon nanotube hybrids, Sensors Actuators B: Chem. 199 (2014) 277-283.

DOI: 10.1016/j.snb.2014.03.101

Google Scholar

[8] Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E.S. Kong, Y. Zhang, Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization andits gas sensing properties, J. Mater. Chem. 21 (2011) 3779-3787.

DOI: 10.1039/c0jm03567j

Google Scholar

[9] J. Pillay, K.I. Ozoemena, Layer-by-layer self-assembled nanostructured phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: Electron transfer dynamics and amplification of H2O2 response, Electrochim. Acta. 54 (2009) 5053- 5059.

DOI: 10.1016/j.electacta.2008.12.056

Google Scholar

[10] F.C. Moraes, D.L.C. Golinelli, L.H. Mascaro, S.A.S. MacHado, Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode, Sensors Actuators B: Chem. 148 (2010) 492-497.

DOI: 10.1016/j.snb.2010.05.005

Google Scholar

[11] Z. Yang, H. Pu, J. Yuan, D. Wan, Y. Liu, Phthalocyanines-MWCNT hybrid materials: Fabrication, aggregation and photoconductivity properties improvement, Chem. Phys. Lett. 465 (2008) 73-77.

DOI: 10.1016/j.cplett.2008.09.043

Google Scholar

[12] J. Bartelmess, B. Ballesteros, G. de la Torre, D. Kiessling, S. Campidelli, M. Prato,T. Torres, and D.M. Guldi, 2010. Phthalocyanine− pyrene conjugates: a powerful approach toward carbon nanotube solar cells, J. of the American Chemical Society, 132(45) (2010) 16202-16211.

DOI: 10.1021/ja107131r

Google Scholar

[13] Z.B. Liu, J.G. Tian, Z. Guo, D.M. Ren, F. Du, J.Y. Zheng, and Y.S. Chen, Enhanced Optical Limiting Effects in Porphyrin‐Covalently Functionalized Single‐Walled Carbon Nanotubes, Advanced materials, 20(3) (2008)511-515.

DOI: 10.1002/adma.200702547

Google Scholar

[14] N.He, Y. Chen, J. Bai, J. Wang, W.J. Blau, and J.Zhu, Preparation and optical limiting properties of multiwalled carbon nanotubes with π-conjugated metal-free phthalocyanine moieties, J. of Physical Chemistry C, 113(30) (2009)13029-13035.

DOI: 10.1021/jp9006813

Google Scholar

[15] Y.Gao, S. Li, X. Wang,R. Zhang, G. Zhang,Y. Zheng, and J.Zhao, Binuclear metal phthalocyanines bonding with carbon nanotubes as catalyst for the Li/SOCl2 battery, J. of Electroanalytical Chemistry, 791 (2017) 75-82.

DOI: 10.1016/j.jelechem.2017.03.013

Google Scholar

[16] R.Zhang, R. Wang, K. Luo, W. Zhang, J. Zhao, and S.Zhang, Multi-walled carbon nanotubes chemically modified by cobalt tetraaminophthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery, J. of The Electrochemical Society, 161(14) (2014) H941-H949.

DOI: 10.1149/2.0951414jes

Google Scholar

[17] M.Zhu, J. Chen, R. Guo, J. Xu, X. Fang, and Y.F. Han, Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction, Applied Catalysis B: Environmental, 251 (2019)112-118.

DOI: 10.1016/j.apcatb.2019.03.047

Google Scholar

[18] X.Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang,Y. Liang, and H.Wang, Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures, Nature communications, 8(1) (2017) 1-8.

DOI: 10.1038/ncomms14675

Google Scholar

[19] X.Yan, X. Xu, Q. Liu, J. Guo, L. Kang, and J.Yao, Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media, J. of Power Sources, 389 (2018) 260-266.

DOI: 10.1016/j.jpowsour.2018.03.042

Google Scholar

[20] A.Abbaspour, and E.Mirahmadi, Electrocatalytic activity of iron and nickel phthalocyanines supported on multi-walled carbon nanotubes towards oxygen evolution reaction., Electrochimica Acta, 105 (2013) 92-98.

DOI: 10.1016/j.electacta.2013.04.143

Google Scholar

[21] T.Mugadza, and T.Nyokong, Synthesis, characterization and the electrocatalytic behaviour of nickel (II) tetraamino-phthalocyanine chemically linked to single walled carbon nanotubes, Electrochimica acta, 55(20) (2010) 6049-6057.

DOI: 10.1016/j.electacta.2010.05.065

Google Scholar

[22] X.Li, W. Xu, Y. Zhang, D. Xu, G. Wang, and Z.Jiang, Chemical grafting of multi-walled carbon nanotubes on metal phthalocyanines for the preparation of nanocomposites with high dielectric constant and low dielectric loss for energy storage application, RSC Advances, 5(64) (2015) 51542-51548.

DOI: 10.1039/c5ra07641b

Google Scholar

[23] L.Guo, Z. Chen, J. Zhang, H. Wu, F. Wu, C. He, B. Wang, and Y.Wu, p-Aminophenol sensor based on tetra-β-[3-(dimethylamine) phenoxy] phthalocyanine cobalt (II)/multiwalled carbon nanotube hybrid, RSC Advances, 5(30) (2015) 23283-23290.

DOI: 10.1039/c5ra00755k

Google Scholar

[24] A.K. Sharma, A. Mahajan, R.K. Bedi, S. Kumar, A.K. Debnath, and D.K. Aswal, CNTs based improved chlorine sensor from non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated cobalt phthalocyanines, RSC advances, 7(78) (2017) 49675-49683.

DOI: 10.1039/c7ra08987b

Google Scholar

[25] X.Liang, Z. Chen, H. Wu, L. Guo, C. He, B. Wang, and Y.Wu, Enhanced NH3-sensing behavior of 2, 9, 16, 23-tetrakis (2, 2, 3, 3-tetrafluoropropoxy) metal (II) phthalocyanine/ multi-walled carbon nanotube hybrids: An investigation of the effects of central metals, Carbon, 80 (2014) 268-278.

DOI: 10.1016/j.carbon.2014.08.065

Google Scholar

[26] Y.Wang, N. Hu, Z. Zhou,D. Xu, Z. Wang, Z. Yang, H. Wei, E.S.W Kong, and Y. Zhang, Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: preparation, characterization and its gas sensing properties, J. of Materials Chemistry, 21(11) (2011) 3779-3787.

DOI: 10.1039/c0jm03567j

Google Scholar

[27] B.Yoon and C. M .Wai, Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications, J. of the American Chemical Society, 127(49) (2005) 17174-17175.

DOI: 10.1021/ja055530f

Google Scholar

[28] A.Solhy, B.F. Machado, J. Beausoleil, Y.Kihn, F.Gonçalves, M. F.Pereira, and P.Serp, MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation, Carbon, 46(9) (2008) 1194-1207.

DOI: 10.1016/j.carbon.2008.04.018

Google Scholar

[29] S.Wang, X.Shi, G.Shao, X.Duan, H. Yang, and T.Wang, Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites, J. of Physics and Chemistry of solids, 69(10) (2008) 2396-2400.

DOI: 10.1016/j.jpcs.2008.04.029

Google Scholar

[30] B.Liu, Z.Li, S.Xu, T. Cong,L.Tian, C. Ding, and M.Lu, in situ synthesis of Ag@ Ag3PO4/MWCNT triples hetero-photocatalyst for degradation of malachite green, Materials Letters, 131 (2014) 229-232.

DOI: 10.1016/j.matlet.2014.05.214

Google Scholar

[31] H.Vu, F. Gonçalves, R. Philippe, E. Lamouroux,M. Corrias, Y. Kihn, and P.Serp, Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde, J. of Catalysis, 240(1) (2006) 18-22.

DOI: 10.1016/j.jcat.2006.03.003

Google Scholar

[32] J.Wei, J. Ding, X. Zhang, D. Wu, Z. Wang, J. Luo, andK. Wang, Coated double-walled carbon nanotubes with ceria nanoparticles. Materials Letters, 59(2-3) (2005) 322-325.

DOI: 10.1016/j.matlet.2004.10.012

Google Scholar

[33] J.Li,Y.B. Wang J.D. Qiu D.C. Sun, andX.H. Xia, Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor, Analytical and bioanalytical chemistry, 383(6) (2005) 918-922.

DOI: 10.1007/s00216-005-0106-6

Google Scholar

[34] Y.Wan, Q. Liang, T. Cong, X. Wang,Y. Tao, M. Sun, andS. Xu, Novel catalyst of zinc tetraamino-phthalocyanine supported by multi-walled carbon nanotubes with enhanced visible-light photocatalytic activity, RSC Advances, 5(81) (2015) 66286-66293.

DOI: 10.1039/c5ra10462a

Google Scholar

[35] A.L. Verma, S. Saxena, G.S.S. Saini, V. Gaur, andV.K. Jain, Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes, Thin Solid Films, 519(22) (2011) 8144-8148.

DOI: 10.1016/j.tsf.2011.06.034

Google Scholar

[36] A.W. Snow, and W.R. Barger, Phthalocyanine films in chemical sensors, (Vol. 1, p.341) (1989) John Wiley and Sons: New York.

Google Scholar

[37] M.S. Liao, and S.Scheiner, Electronic structure and bonding in metal phthalocyanines, metal= Fe, Co, Ni, Cu, Zn, Mg, The J. of Chemical Physics, 114(22) (2001) 9780-9791.

DOI: 10.1063/1.1367374

Google Scholar

[38] K.Sakamoto, and E.Ohno-Okumura, Syntheses and functional properties of phthalocyanines, Materials, 2(3) (2009) 1127-1179.

DOI: 10.3390/ma2031127

Google Scholar

[39] M.S. Nieuwenhuizen A.J. Nederlof, and A.W. Barendsz, (Metallo) phthalocyanines as chemical interfaces on a surface acoustic wave gas sensor for nitrogen dioxide, Analytical Chemistry, 60(3) (1988) 230-235.

DOI: 10.1021/ac00154a009

Google Scholar

[40] F.I. Bohrer,A. Sharoni, C. Colesniuc, J. Park, I.K. Schuller, A.C. Kummel, andW.C. Trogler, Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films, J. of the American Chemical Society, 129(17) (2007) 5640-5646.

DOI: 10.1021/ja0689379

Google Scholar

[41] D.Quiñonero, C. Garau, A. Frontera, P. Ballester,A. Costa, and P.M. Deyà, Structure and binding energy of anion− π and cation− π complexes: a comparison of MP2, RI-MP2, DFT, and DF-DFT methods, The J. of physical chemistry A, 109(20) (2005) 4632-4637.

DOI: 10.1021/jp044616c

Google Scholar

[42] X.Wang, Y. Liu, W. Qiu, and D.Zhu, Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials, J. of Materials Chemistry, 12(6) (2002) 1636-1639.

DOI: 10.1039/b201447e

Google Scholar

[43] D.D. Eley, Phthalocyanines as semiconductors. Nature, 162(4125), (1948),819.

DOI: 10.1038/162819a0

Google Scholar

[44] P.Jha, M. Sharma, A. Chouksey, P. Chaturvedi, D. Kumar, G. Upadhyaya, and P.K. Chaudhury, Functionalization of carbon nanotubes with metal phthalocyanine for selective gas sensing application, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44(10) (2014)1551-1557.

DOI: 10.1080/15533174.2013.818021

Google Scholar

[45] M.V. Naseh, A.A. Khodadadi, Y. Mortazavi, O.A. Sahraei, F. Pourfayaz, andS.M. Sedghi, Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma, World Academy of Science, Engineering and Technology, 49 (2009) 177-179.

Google Scholar

[46] R.N. Royan, A.B. Sulong, H. Suherman, and J.Sahari, Effect of wet oxidation on the dispersion and electrical properties of multi-walled carbon nanotubes/epoxy nanocomposites, In Key Engineering Materials , Trans Tech Publications ,Vol. 471 (2011) 162-166. ‏‏.

DOI: 10.4028/www.scientific.net/kem.471-472.162

Google Scholar

[47] A.K. Cuentas-Gallegos, R. Martínez-Rosales, M.E. Rincón G.A. Hirata, and G.Orozco, Design of hybrid materials based on carbon nanotubes and polyoxometalates, Optical materials, 29(1) (2006) 126-133.

DOI: 10.1016/j.optmat.2006.03.020

Google Scholar

[48] H.Wilson, S. Ripp, L. Prisbrey M.A. Brown, T. Sharf D.J. Myles, andE.D. Minot, Electrical monitoring of sp3 defect formation in individual carbon nanotubes, The J. of Physical Chemistry C, 120(3) (2016) 1971-1976.

DOI: 10.1021/acs.jpcc.5b11272

Google Scholar

[49] P.C.Ma,N.A. Siddiqui,G. Marom, andJ.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Composites Part A: Applied Science and Manufacturing, 41(10) (2010) 1345-1367.

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[50] A. Pistone, A.Ferlazzo, M. Lanza, C. Milone, D. Iannazzo, A. Piperno, E. Piperopoulos, and S. Galvagno, Morphological modification of MWCNT functionalized with HNO3/H2SO4 mixtures. J. of nanoscience and nanotechnology, 12(6) (2012) 5054-5060.

DOI: 10.1166/jnn.2012.4928

Google Scholar

[51] JHA, Neetu; RAMAPRABHU, S. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. J. of Physical Chemistry C, 112(25) (2008) 9315-9319.

DOI: 10.1021/jp8017309

Google Scholar

[52] H.J. Park, M. Park, J.Y. Chang, and H.Lee, The effect of pre-treatment methods on morphology and size distribution of multi-walled carbon nanotubes, Nanotechnology, 19(33) (2008) 335702.

DOI: 10.1088/0957-4484/19/33/335702

Google Scholar

[53] W. Feng, Y. Li, Y. Feng, and J. Wu, Enhanced photo response from the ordered microstructure of naphthalocyanine-carbon nanotube composite film, Nanotechnology. 17 (2006) 3274-3279.

DOI: 10.1088/0957-4484/17/13/033

Google Scholar

[54] J.Yu, N.Grossiord, C.E. Koning, andJ. Loos , Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 45(3),( 2007),618–623.

DOI: 10.1016/j.carbon.2006.10.010

Google Scholar

[55] H.Hu,B. Zhao M.E. Itkis R.C. Haddon, Nitric acid purification of single-walled carbon nanotubes, J. Phys. Chem. B 107 (2003) 13838–13842.

DOI: 10.1021/jp035719i

Google Scholar

[56] E.M. Itkis, S. Niyogi,M. Meng, M. Hamon, H. Hu,R.C. Haddon, Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes, Nano Lett. 2 (2002)155–159.

DOI: 10.1021/nl0156639

Google Scholar

[57] S.Goyanes , G.R. Rubiolo ,A. Salazar ,A.Jimeno ,M.A. Corcuera ,I. Mondragon , Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy, Diamond and related materials.,Feb 1;16(2)( 2007)412-7.

DOI: 10.1016/j.diamond.2006.08.021

Google Scholar

[58] P.JCamp A.C. Jones R.K. Neely,and N.M. Speirs, Aggregation of copper (II) tetrasulfonated phthalocyanine in aqueous salt solutions, The J. of Physical Chemistry A, 106(44)( 2002)10725-10732.

DOI: 10.1021/jp026551o

Google Scholar

[59] V.Iliev, V. Alexiev, and L. Bilyarska, Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds, J. of Molecular Catalysis A: Chemical, 137(1-3)( 1999)15-22.

DOI: 10.1016/s1381-1169(98)00069-7

Google Scholar

[60] T.V. Basova,M. Çamur A.A. Esenpınar,S. Tuncel,A. Hassan, A. Alexeyev, H.Banimuslem, M. Durmuş A.G. Gürek,and V. Ahsen, Effect of substituents on the orientation of octasubstituted copper (II) phthalocyanine thin films, Synthetic Metals, 162(7-8)( 2012)735-742.

DOI: 10.1016/j.synthmet.2012.02.006

Google Scholar

[61] D.S. Ahmed, A.J. Haider, and M.R. Mohammad, Comparesion of functionalization of multi-walled carbon nanotubes treated by oil olive and nitric acid and their characterization, Energy Procedia, 36 (2013) 1111-1118.

DOI: 10.1016/j.egypro.2013.07.126

Google Scholar

[62] M.Elkashef, K. Wang, and M.N. Abou-Zeid, Acid-treated carbon nanotubes and their effects on mortar strength, Frontiers of Structural and Civil Engineering, 10(2) (2016) 180-188.

DOI: 10.1007/s11709-015-0325-7

Google Scholar

[63] X.Jiang, J. Gu, X. Bai, L. Lin, and Y.Zhang, The influence of acid treatment on multi-walled carbon nanotubes, Pigment and Resin Technology, 38(3) (2009)165-173.

DOI: 10.1108/03699420910957024

Google Scholar

[64] E.Ramya, N. Momen, and D.N. Rao, Preparation of multiwall carbon nanotubes with zinc phthalocyanine hybrid materials and their nonlinear optical (NLO) properties, J. of nanoscience and nanotechnology, 18(7) ( 2018) 4764-4770.

DOI: 10.1166/jnn.2018.15272

Google Scholar

[65] H.T. Akçay, R. Bayrak, E.Şahin, K. Karaoğlu, and Ü .Demirbaş, Experimental and computational studies on 4-[(3, 5-dimethyl-1H-pyrazol-1-yl) methoxy] phthalonitrile and synthesis and spectroscopic characterization of its novel phthalocyanine magnesium (II) and tin (II) metal complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114 (2013) 531-540.

DOI: 10.1016/j.saa.2013.05.042

Google Scholar

[66] M.M.El-Nahass, H.S. Soliman, B.A. Khalifa, and L.M. Soliman, Structural and optical properties of nanocrystalline aluminum phthalocyanine chloride thin films, Materials Science in Semiconductor Processing, 38 (2015) 177-183.

DOI: 10.1016/j.mssp.2015.04.014

Google Scholar

[67] S.I. Shihub , and R.D. Gould ,Frequency dependence of electronic conduction parameters in evaporated thin films of cobalt phthalocyanine, Thin Solid Films, 254(1-2) ( 1995) 187-193.

DOI: 10.1016/0040-6090(94)06240-l

Google Scholar

[68] R.Seoudi G.S. El-Bahy , and Z.A.El Sayed , FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes, J. of Molecular Structure, 753(1-3) ( 2005) 119-126.

DOI: 10.1016/j.molstruc.2005.06.003

Google Scholar

[69] S.Ambily and C.S. Menon, The effect of growth parameters on the electrical, optical and structural properties of copper phthalocyanine thin films, Thin Solid Films, 347(1-2) (1999) 284-288.

DOI: 10.1016/s0040-6090(98)01744-1

Google Scholar