[1]
G. Dennler, M.C. Scharber, C.J. Brabec, Polymer‐Fullerene Bulk‐Heterojunction Solar Cells, Adv. Mater. 21 (2009) 1323.
DOI: 10.1002/adma.200801283
Google Scholar
[2]
O. Inganas, F.L. Zhang, M.R. Andersson, Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics, Acc. Chem. Res. 42 (2009) 1731-1739.
DOI: 10.1021/ar900073s
Google Scholar
[3]
K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Degrasation of Organic Solar Cells Due to Air Exposure, Sol. Energy Mater. Sol. Cells 90 (2006) 3520-3530.
DOI: 10.1016/j.solmat.2006.06.041
Google Scholar
[4]
Y. M. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer, Adv. Mater. 23 (2011) 1679-1683.
DOI: 10.1002/adma.201004301
Google Scholar
[5]
M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells. 92 (2008) 686-714.
DOI: 10.1016/j.solmat.2008.01.005
Google Scholar
[6]
H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen, Interface Engineering for Organic Electronics, Adv. Funct. Mater. 20 (2010) 1371-1388.
DOI: 10.1002/adfm.200902236
Google Scholar
[7]
R. Po, C. Carbonera, A. Bernardi, N. Camaioni, The Role of Buffer Layers in Polymer Solar Cells, Energy Environ. Sci. 4 (2011) 285-310.
DOI: 10.1039/c0ee00273a
Google Scholar
[8]
T. Stubhan, T. Ameri1, M. Salinas, J. Krantz, F. Machui, M. Halik, C.J. Brabec, High Shunt Resistance in Polymer Solar Cells Comprising a MoO3 Hole Extraction Layer Processed from Nanoparticle Suspension, Appl. Phys. Lett. 98 (2011) 253308.
DOI: 10.1063/1.3601921
Google Scholar
[9]
W.H. Baek, M. Choi, T.S. Yoon, H.H. Lee, Y.S. Kim, Use of Fluorine-Doped Tin Oxide Instead of Indium Tin Oxide in Highly Efficient Air-Fabricated Inverted Polymer Solar Cells, Appl. Phys. Lett. 96 (2010) 133506.
DOI: 10.1063/1.3374406
Google Scholar
[10]
S.W. Heo, K.H. Baek, T.H. Lee, J.Y. Lee, D.K. Moon, Enhanced Performance in Inverted Polymer Solar Cells Via Solution Process: Morphology Controlling of PEDOT:PSS as Anode Buffer Layer by Adding Surfactants, Org. Electron. 14 (2013) 1629-1635.
DOI: 10.1016/j.orgel.2013.03.036
Google Scholar
[11]
F.J. Lim, A. Krishnamoorthy, G.W. Ho, All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells, Sol. Energy Mater. Sol. Cells 150 (2016) 19-31.
DOI: 10.1016/j.solmat.2016.01.013
Google Scholar
[12]
M.M. Voigt, R.C.I. Mackenzie, C.P. Yau, P. Atienzar, J. Dane, P.E. Keivanidis, D.D.C. Bradley, J. Nelson, Gravure Printing for Three Subsequent Solar Cell Layers of Inverted Structures on Flexible Substrates, Sol. Energy Mater. Sol. Cells 95 (2011) 731-734.
DOI: 10.1016/j.solmat.2010.10.013
Google Scholar
[13]
S. Kouijzer, S. Esiner, C.H. Frijters, M. Turbiez, M.M. Wienk, R.A.J. Janssen, Efficient Inverted Tandem Polymer Solar Cells with a Solution-Processed Recombination Layer, Adv. Energy Mater. 2 (2012) 945-949.
DOI: 10.1002/aenm.201100773
Google Scholar
[14]
A. Arulraj, S. Bhuvaneshwari, G. Senguttuvan, M. Ramesh, Solution Processed Inverted Organic Bulk Heterojunction Solar Cells Under Ambient Air-Atmosphere, Journal of Inorganic and Organometallic Polymers and Materials 28 (2018) 1029-1036.
DOI: 10.1007/s10904-017-0762-y
Google Scholar
[15]
X. Li, W.C.H. Choy, F. Xie, S. Zhangb, J. Houb, Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells, J. Mater. Chem. A, 1 (2013) 6614-6621.
DOI: 10.1039/c3ta10531h
Google Scholar
[16]
W.-Y. Jin, R.T. Ginting, S.-H. Jin, J.-W. Kang, Highly stable and efficient inverted organic solar cells based on low-temperature solution processed PEIE and ZnO bilayers, J. Mater. Chem. A 4 (2016) 3784-3791.
DOI: 10.1039/c6ta00957c
Google Scholar
[17]
J.Y. Lee, T. Lee, H.J. Park, L.J. Guo, Improved solar cell performance by adding ultra-thin Alq3 at the cathode interface, Organic Electronics 15 (2014) 2710-2714.
DOI: 10.1016/j.orgel.2014.08.005
Google Scholar
[18]
Y. Zhao, Z. Xie, Y. Qu, Y. Geng, L. Wang, Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency, Synthetic Metals, 158 (2008) 908-911.
DOI: 10.1016/j.synthmet.2008.06.011
Google Scholar
[19]
Z. Su, L. Wang, Y. Li, H. Zhao, B. Chu, W. Li, Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells, Nanoscale Research Letters 7 (2012) 465.
DOI: 10.1186/1556-276x-7-465
Google Scholar
[20]
Y.F. Lim, S. Lee, D.J. Herman, M.T. Lloyd, J.E. Anthony, G.G. Malliaras, Spray- deposited poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) top electrode for organic solar cells, Appl. Phys. Lett. 93 (2008) 193301.
DOI: 10.1063/1.3021022
Google Scholar
[21]
V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 94 (2003) 6849.
DOI: 10.1063/1.1620683
Google Scholar
[22]
M. Smirnov, C. Baban, and G. I. Rusu, Structural and optical characteristics of spin-coated ZnO thin films, Appl. Surf. Sci. 256 (2010) 2405-2408.
DOI: 10.1016/j.apsusc.2009.10.075
Google Scholar
[23]
M. Sharma, R.M. Mehra, Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol-gel route, Appl. Surf. Sci. 255 (2008) 2527-2532.
DOI: 10.1016/j.apsusc.2008.07.153
Google Scholar
[24]
Z.-N. Ng, K.-Y. Chan, S.A. Kamaruddin, M. Z. Sahdan, Influence of Spinning Speed on the Properties of Sol-Gel Spin Coated ZnO Films, Advanced Materials Research 970 (2014) 115-119.
DOI: 10.4028/www.scientific.net/amr.970.115
Google Scholar
[25]
W.-K. Lin, S.-H. Su, C.-C. Liu, M. Yokoyama, All-solution-processed inverted organic solar cell with a stacked hole-transporting layer, Jpn. J. Appl. Phys. 53 (2014) 11RB04.
DOI: 10.7567/jjap.53.11rb04
Google Scholar
[26]
B.R. Patil, S. Shanmugam, J.-P. Teunissen, Y. Galagan, All-solution processed organic solar cells with top illumination, Organic Electronics 21 (2015) 40-46.
DOI: 10.1016/j.orgel.2015.02.028
Google Scholar
[27]
C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem. A 2 (2014) 15897-15903.
DOI: 10.1039/c4ta03674c
Google Scholar