Development of Melamine Electrochemical Sensor Using Molecularly Imprinted Conducting Polyanilne-Oxalic Acid Blend as a Molecular Recognition Element

Article Preview

Abstract:

In the present work, oxalic acid doped molecularly imprinted conducting polyaniline film for melamine detection was prepared by in-situ-electrochemical polymerization on the glassy carbon electrode (GCE) using melamine as template. The optimal monomer/template molar ratio was attained to be 0.2:0.1:0.01 (aniline: oxalic acid: melamine) and molecular recognition properties towards melamine were evaluated by differential pulse voltammetry. Under optimal conditions the imprinted polymer film was used to detect different concentrations of melamine in standard solutions and real milk samples. Compared with the nonimprinted polymer (NIP), the molecularly imprinted polymer (MIP) film showed higher affinity and sensitivity towards melamine with a linear range, quantification limit and detection limit of 0.5-200 nM, 1.375 nM and 0.413 nM respectively. Furthermore, the polymer blend film showed good selectivity toward melamine, stability, reproducibility and practical applications for the determination of melamine in infant formula milk with the recovery of 92.32-102.49%. The doping of the polymer with oxalic acid enhanced the conductivity and sensitivity of the sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-73

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Araújo, J.L. Moreira, N. Ratola, L. Santos, A. Alves, Melamine and Cyanuric Acid in Foodstuffs and Pet Food: Method Validation and Sample Screening. Analytical Letters. 45(2012)613-624.

DOI: 10.1080/00032719.2011.649458

Google Scholar

[2] G. Venkatasami, J.R. Sowa Jr, A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Analytica Chimica Acta. 665(2010)227-230.

DOI: 10.1016/j.aca.2010.03.037

Google Scholar

[3] O.S. Wolfbeis, Chemical Sensors-Survey and trends. Fresenius J Anal Chem 337(1990)522-527.

DOI: 10.1007/bf00322857

Google Scholar

[4] B. Szulczynski, J. Gebicki, Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments. 4(2017) 21.

DOI: 10.3390/environments4010021

Google Scholar

[5] M. Angelopoulos, Conducting polymers in microelectronics, IBM J. Res. Dev; 2001; 45.

Google Scholar

[6] C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics. Adv. Mater. 14(2002)111-1222.

DOI: 10.1002/1521-4095(20020116)14:2<99::aid-adma99>3.0.co;2-9

Google Scholar

[7] R.H. Baughman, L.W. Shacklette, in: Science and Applications of Conducting Polymers, Eds. W.R. Salaneck, D.T. Clark, E.J. Samuelsen, Adam Hilger, Bristol 1993, p.47; T.F. Otero, J. Rodriguez, in: Intrinsically. Conducting Polymers: An Emerging Technology, Ed. M. Aldissi, Kluwer Academic Publishers, Dordrecht.

DOI: 10.1007/978-94-017-1952-0

Google Scholar

[8] T.H. Le, Y. Kim, H. Yoon, Electrical and Electrochemical Properties of Conducting Polymers, Polymers. 9(2017)150.

Google Scholar

[9] N. Hall, Twenty-five years of conducting polymers. Chem. Commun. 7(2003)1-4.

Google Scholar

[10] S. Gupta, C. Price, Heintzman E, Conducting polymer nanostructures and nanocomposites with carbon nanotubes: Hierarchical assembly by molecular electrochemistry, growth aspects and property characterization, J. Nanosci. Nanotechnol. 16(2016) 374-391.

DOI: 10.1166/jnn.2016.10721

Google Scholar

[11] S. Ameen, M.S. Akhtar, Y.S. Kim, O.B. Yang, H.S. Shin, Sulfamic Acid-Doped Polyaniline Nanofibers Thin Film-Based Counter Electrode: Application in Dye-Sensitized Solar Cells, J. Phys. Chem. C. 114(2010)4760-4764.

DOI: 10.1021/jp912037w

Google Scholar

[12] S. Ameen, M.S. Akhtar, H.S. Shin, Semiconducting Nanostructures and Nanocomposites for the Recognition of Toxic Chemicals (A Review), Oriental Journal of Chemistry. 29(3)(2013)837-860.

DOI: 10.13005/ojc/290302

Google Scholar

[13] E. Erdem, Synthesis and Properties of Oxalic Acid-doped Polyaniline. Polymer International. 39(1996)153-159.

DOI: 10.1002/(sici)1097-0126(199602)39:2<153::aid-pi481>3.0.co;2-e

Google Scholar

[14] M.R. Devi, A. Saranya, J. Pandiarajan, J. Dharmaraja, N. Prithivikumaran, N. Jeyakumaran, Synthesis, Electro Chemical and Optical Performance of Organic Acids Doped Polyaniline (PANI), Journal of Applied Science and Engineering Methodologies. 2(3)(2016)317-321.

DOI: 10.1016/j.jksus.2018.02.008

Google Scholar

[15] J.M. Moon, N. Thapliyal, K.K. Hussain, N. Rajendra, R. Goyal, Y.B. Shim, Conducting polymer-based electrochemical biosensors for neurotransmitters: A review, Biosensors and Bioelectronics. 102(2018)540-552.

DOI: 10.1016/j.bios.2017.11.069

Google Scholar

[16] Y. Wang, K. Chen, T. Li, H. Li, One-step and template-free synthesis of itaconic acid–doped polyaniline nanorods in aqueous solution, High Performance Polymers. (2015) 1-9.

DOI: 10.1177/0954008315580447

Google Scholar

[17] M.V. Kulkarni, A.K. Viswanath, R. Marimuthu, T. Seth, Synthesis and Characterization of Polyaniline Doped with Organic Acids, J Polym Sci Part A: Polym Chem. 42(2004)2043-2049.

DOI: 10.1002/pola.11030

Google Scholar

[18] C.T.P. Silva, V.L. Kupfer, G.R. Silva, M.P. Moisés, M.A.G. Trindade, N.L.C. Domingues, A.W. Rinaldi, One-step Electrochemical Synthesis of Polyaniline/Metallic Oxide Nanoparticle (γ-Fe2O3) Thin Film, Int. J. Electrochem. Sci. 11(2016)5380-5394.

DOI: 10.20964/2016.07.39

Google Scholar

[19] G. Wulff, A. Sarhan, K. Zabrocki, Enzyme-analogue built polymers and their use for the resolution of racemates,Tetrahedron Letters. 14(1973)4329-4332.

DOI: 10.1016/s0040-4039(01)87213-0

Google Scholar

[20] B. Ekberg, K. Mosbach, Molecular imprinting: A technique for producing specific separation materials, Trends in Biotechnology. 7(1989) 92-96.

DOI: 10.1016/0167-7799(89)90006-1

Google Scholar

[21] K. Mosbach, Molecular imprinting Trends Biochem. Sci. 19(1994)9-14.

Google Scholar

[22] S. Al-Kindy, R. Badía, J.L. SuárezRodríguez, M.E. Díaz-García, Molecularly imprinted polymers and optical sensing applications, Critical Reviews in Analytical Chemistry. 30(4) (2000) 291-309.

DOI: 10.1080/10408340008984162

Google Scholar

[23] F. Yemiş, P. Alkan, B. Yenigül, M. Yenigül, Molecularly Imprinted Polymers and Their Synthesis by Different Methods, Polymers & Polymer Composites 21(3)(2013)45-150.

DOI: 10.1177/096739111302100304

Google Scholar

[24] G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem Rev. 102(1) (2002)1-28.

DOI: 10.1021/cr980039a

Google Scholar

[25] J. Maleki, F. Nazarib, J. Yousefi, R. Khosrokhavar, M.J. Hosseinid, Determinations of Melamine Residue in Infant Formula Brands Available in Iran Market Using by HPLC Method, Iranian Journal of Pharmaceutical Research. 17(2)(2018)563-570.

Google Scholar

[26] D.C. Trivedi, Handbook of Organic Conductive Molecules and Polymers, (Ed.) Nalwa, H.S., Wiley, Chichester, 2:505, (1997).

Google Scholar

[27] J. Yang, Q. Cao, Y. Zheng, C. Bai, Y. Teng, W. Xu, S. Yang, A Molecularly Imprinted Polythionine-Modified Electrode Based on a Graphene-Gold Nanoparticle Composite (MIP/AuNPs/rGO/GCE) for the Determination of Thrombin, Int. J. Electrochem. Sci. 13 (2018) 9333-9345.

DOI: 10.20964/2018.10.53

Google Scholar

[28] L. Eduardo, G. Joaquin, M. Angela, Recent advances on the theory of pulse techniques. A mini review, Electrochemistry communications. 43(2014)25-30.

Google Scholar

[29] M. Amare, G. Menkir, Differential pulse voltammetric determination of salbutamol sulphate in syrup pharmaceutical formulation using poly(4-amino-3-hydroxynaphthalene sulfonic acid) modified glaasy carbon electrode, Heliyon. 3(10)(2017).

DOI: 10.1016/j.heliyon.2017.e00417

Google Scholar

[30] A.G. González, M.A. Herrador, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, Trend. Anal. Chem. 26(2007)227-238.

DOI: 10.1016/j.trac.2007.01.009

Google Scholar

[31] Y. Tian, P. Deng, Y. Wu, Z. Ding, G. Li, J. Liu, Q. He, A Simple and Efficient Molecularly Imprinted Electrochemical Sensor for the Selective Determination of Tryptophan, Biomolecules. 9(2019)294.

DOI: 10.3390/biom9070294

Google Scholar

[32] D. Dechtrirat, B. Sookcharoenpinyo, P. Prajongtat, C. Sriprachuabwong, A. Sanguankiat, A. Tuantranont, Tuantranont S, An electrochemical MIP sensor for selective detection of salbutamol based on a graphene/ PEDOT:PSS modified screen printed carbon electrode, RSC Adv. 8(2018)206-212.

DOI: 10.1039/c7ra09601a

Google Scholar

[33] T. Zhao, L. Liu, G. Li, A. Dang, T. Li, Electrochemical Determination of Melamine with a Glassy Carbon Electrode Coated with a Multi-Wall Carbon Nanotube/Chitosan Composite, Journal of the Electrochemical Society. 159 (5)(2012)K141-K145.

DOI: 10.1149/2.065205jes

Google Scholar

[34] R. Zhang, S. Xu, Y. Zhu, W. Zhao, J. Luo, X. Liu, D. Tang, Molecularly imprinted nanohybrids based on dopamine-modified poly (γ-glutamic acid) for electrochemical sensing of melamine, Biosensors and Bioelectronics. 85(2016)381-386.

DOI: 10.1016/j.bios.2016.05.030

Google Scholar

[35] B. Wu, Z. Wang, D. Zhao, X. Lu, A novel molecularly imprinted impedimetric sensor for melamine determination, Talanta. 101(2012)374-381.

DOI: 10.1016/j.talanta.2012.09.044

Google Scholar

[36] Q. Cao, H. Zhao, L. Zeng, J. Wang, R. Wang, X. Qiu, Y. He, Electrochemical determination of melamine using oligonucleotides modified gold electrodes, Talanta. 80(2009)484-488.

DOI: 10.1016/j.talanta.2009.07.006

Google Scholar

[37] K. Rovina, S. Siddiquee, N.K. Wong, Development of melamine sensor based on ionic liquid/nanoparticles/chitosan with modified gold electrode for determination of melamine in milk product, Sensing and Bio-Sensing Research. 4(2015)16-22.

DOI: 10.1016/j.sbsr.2015.02.003

Google Scholar

[38] A.Pietrzyk, W. Kutner, R. Chitta, M.E. Zandler, F. D'Souza, F. Sannicolo, P.R. Mussini, Melamine Acoustic Chemosensor Based on Molecularly Imprinted Polymer Film, Anal. Chem. 81(2009)10061-10070.

DOI: 10.1021/ac9020352

Google Scholar

[39] Y.T. Liu, J. Denga, X.L. Xiao, L. Ding, Y.L. Yuana, H. Li, X.T. Li, X.N. Yana, L.L. Wang, Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk, Electrochimica Acta. 56(2011)4595-4602.

DOI: 10.1016/j.electacta.2011.02.088

Google Scholar

[40] B. Liu, B. Xiao, L. Cui, M. Wang, Molecularly imprinted electrochemical sensor for the highly selective and sensitive determination of melamine, Materials Science and Engineering C. 55(2015)457-461.

DOI: 10.1016/j.msec.2015.05.080

Google Scholar

[41] R. Liang, R. Zhang, W. Qin, Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sensors and Actuators B. 141(2009)544-550.

DOI: 10.1016/j.snb.2009.05.024

Google Scholar

[42] W. Li, Y. Zheng, T. Zhang, S. Wu, J. Zhang, J. Fang, A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection, Sensors. 18(2018)828.

DOI: 10.3390/s18030828

Google Scholar

[43] Z. Ji, W. Chen, E. Wang, R. Deng, Electropolymerized Molecular Imprinting & Graphene Modified Electrode for Detection of Melamine, Int. J. Electrochem. Sci. 12(2017)11942-11954.

DOI: 10.20964/2017.12.34

Google Scholar