Influence of Different Nano-Structured Fillers on the Performance of Epoxy Nanocomposites

Article Preview

Abstract:

Nowadays, multi-functional materials are strongly needed to meet the requirements of next-generation electronic devices. In this work, two different nanostructured fillers, reduced graphene oxide (RGO) and nanoalumina, were chosen to study their effect on the thermal, electrical and mechanical properties of the prepared epoxy composites at different loadings (0.5 to 2 wt%). RGO was firstly prepared and characterized by XRD, Raman spectroscopy and TEM confirming its production. The results revealed that RGO showed excellent adhesion with the polymer. Whilst, alumina aggregated and debonded from the matrix, as confirmed by SEM images. Hence, at only 2 wt%, RGO/epoxy composites exhibited the highest thermal conductivity (0.391 W/m-K), which was 1.96 times higher than the neat epoxy. Whereas, the alumina/epoxy composites showed lower increment at the same loading (0.206 W/m-K). However, at 2 wt% RGO, electrical percolation networks had been formed across the matrix (DC conductivity = 2×10-7 S/cm). While, epoxy filled with alumina remained insulative at any loading (~ 10-12 S/cm at 100 Hz). Besides, the tensile strength of the composites was improved by 75% and 37% when filled with 0.5 wt% RGO and alumina, respectively. These results are very useful for preparing multi-functional polymeric materials, which are critically required for packaging industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-60

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Review of thermal conductivity in composites: Mechanisms, parameters and theory, Prog. Polym. Sci. 61 (2016), p.1–28.

DOI: 10.1016/j.progpolymsci.2016.05.001

Google Scholar

[2] M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil and O. Regev, Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects, Chem. Mater. 27 (2015), p.2100–2106.

DOI: 10.1021/cm504550e

Google Scholar

[3] W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie et al., Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon N. Y. 49 (2011), p.495–500.

DOI: 10.1016/j.carbon.2010.09.047

Google Scholar

[4] E.-S. Lee, S.-M. Lee, D.J. Shanefield and W.R. Cannon, Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin, J. Am. Ceram. Soc. 91 (2008), p.1169–1174.

DOI: 10.1111/j.1551-2916.2008.02247.x

Google Scholar

[5] C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang, J. Luo et al., Enhanced through-plane thermal conductivity of boron nitride/epoxy composites, Compos. Part A Appl. Sci. Manuf. 98 (2017), p.25–31.

DOI: 10.1016/j.compositesa.2017.03.012

Google Scholar

[6] J.S. Lewis, Z. Barani, A.S. Magana, F. Kargar and A.A. Balandin, Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers, Mater. Res. Express 6 (2019), p.85325.

DOI: 10.1088/2053-1591/ab2215

Google Scholar

[7] Z. Liu, J. Li and X. Liu, Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties, ACS Appl. Mater. Interfaces 12 (2020), p.6503–6515.

DOI: 10.1021/acsami.9b21467

Google Scholar

[8] S. Han, Q. Meng, Z. Qiu, A. Osman, R. Cai, Y. Yu et al., Mechanical, toughness and thermal properties of 2D material- reinforced epoxy composites, Polymer (Guildf). 184 (2019), p.121884.

DOI: 10.1016/j.polymer.2019.121884

Google Scholar

[9] C. Chen, X. Li, Y. Wen, J. Liu, X. Li, H. Zeng et al., Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: A promising strategy for enhancing thermal conductivity of epoxy composites, Compos. Part A Appl. Sci. Manuf. 125 (2019), p.105517.

DOI: 10.1016/j.compositesa.2019.105517

Google Scholar

[10] Y. Li, H. Zhang, H. Porwal, Z. Huang, E. Bilotti and T. Peijs, Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites, Compos. Part A Appl. Sci. Manuf. 95 (2017), p.229–236.

DOI: 10.1016/j.compositesa.2017.01.007

Google Scholar

[11] Q. Meng, S. Han, S. Araby, Y. Zhao, Z. Liu and S. Lu, Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives, J. Adhes. Sci. Technol. 33 (2019), p.1337–1356.

DOI: 10.1080/01694243.2019.1595890

Google Scholar

[12] V. Kavimani, K.S. Prakash, T. Thankachan and R. Udayakumar, Synergistic improvement of epoxy derived polymer composites reinforced with Graphene Oxide (GO) plus Titanium di oxide(TiO2), Compos. Part B Eng. 191 (2020), p.107911.

DOI: 10.1016/j.compositesb.2020.107911

Google Scholar

[13] M.R. Zakaria, M.H. Abdul Kudus, H. Md. Akil and M.Z. Mohd Thirmizir, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties, Compos. Part B Eng. 119 (2017), p.57–66.

DOI: 10.1016/j.compositesb.2017.03.023

Google Scholar

[14] Y. Fu, Z. He, D. Mo and S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng. 66 (2014), p.493–498.

DOI: 10.1016/j.applthermaleng.2014.02.044

Google Scholar

[15] A. Permal, M. Devarajan, H.L. Hung, T. Zahner, D. Lacey and K. Ibrahim, Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management, J. Mater. Eng. Perform. 27 (2018), p.1296–1307.

DOI: 10.1007/s11665-018-3151-y

Google Scholar

[16] B. Wetzel, F. Haupert and M.Q. Zhang, Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol. 63 (2003), p.2055–(2067).

DOI: 10.1016/s0266-3538(03)00115-5

Google Scholar

[17] R.M. Rodgers, H. Mahfuz, V.K. Rangari, N. Chisholm and S. Jeelani, Infusion of SiC nanoparticles into SC-15 epoxy: An investigation of thermal and mechanical response, Macromol. Mater. Eng. 290 (2005), p.423–429.

DOI: 10.1002/mame.200400202

Google Scholar

[18] Z. Han and A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36 (2011), p.914–944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[19] C.N.R. Rao, F.L. Deepak, G. Gundiah and A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 31 (2003), p.5–147.

DOI: 10.1016/j.progsolidstchem.2003.08.001

Google Scholar

[20] C. Huo, Z. Yan, X. Song and H. Zeng, 2D materials via liquid exfoliation: a review on fabrication and applications, Sci. Bull. 60 (2015), p.1994–(2008).

DOI: 10.1007/s11434-015-0936-3

Google Scholar

[21] B. Pukánszky and E. Fekete, Adhesion and Surface Modification, in Mineral Fillers in Thermoplastics I. Advances in Polymer Science, J. Jancar, E. Fekete, P.R. Hornsby, J. Jancar, B. Pukánszky and R.N. Rothon, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, p.109–153.

DOI: 10.1007/3-540-69220-7

Google Scholar

[22] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008), p.902–907.

DOI: 10.1021/nl0731872

Google Scholar

[23] C. Lee, X. Wei, J.W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science (80-. ). 321 (2008), p.385–388.

DOI: 10.1126/science.1157996

Google Scholar

[24] D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai et al., Electronic structure of graphite oxide and thermally reduced graphite oxide, Carbon N. Y. 49 (2011), p.1362–1366.

DOI: 10.1016/j.carbon.2010.12.002

Google Scholar

[25] W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958), p.1339.

DOI: 10.1021/ja01539a017

Google Scholar

[26] A.N. Fouda, M.K.A. Assy, G. El Enany and N. Yousf, Enhanced Capacitance of Thermally Reduced Hexagonal Graphene Oxide for High Performance Supercapacitor, Fullerenes, Nanotub. Carbon Nanostructures 23 (2015), p.618–622.

DOI: 10.1080/1536383x.2014.943889

Google Scholar

[27] A.E.F. Oliveira, G.B. Braga, C.R.T. Tarley and A.C. Pereira, Thermally reduced graphene oxide: synthesis, studies and characterization, J. Mater. Sci. 53 (2018), p.12005–12015.

DOI: 10.1007/s10853-018-2473-3

Google Scholar

[28] S. Han, Q. Meng, S. Araby, T. Liu and M. Demiral, Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis, Compos. Part A Appl. Sci. Manuf. 120 (2019), p.116–126.

DOI: 10.1016/j.compositesa.2019.02.027

Google Scholar

[29] Y. Chen, Y. Niu, T. Tian, J. Zhang, Y. Wang, Y. Li et al., Microbial reduction of graphene oxide by Azotobacter chroococcum, Chem. Phys. Lett. 677 (2017), p.143–147.

DOI: 10.1016/j.cplett.2017.04.002

Google Scholar

[30] S. Thakur and N. Karak, Green reduction of graphene oxide by aqueous phytoextracts, Carbon N. Y. 50 (2012), p.5331–5339.

DOI: 10.1016/j.carbon.2012.07.023

Google Scholar

[31] W. Yuan, Q. Xiao, L. Li and T. Xu, Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles, Appl. Therm. Eng. 106 (2016), p.1067–1074.

DOI: 10.1016/j.applthermaleng.2016.06.089

Google Scholar

[32] J. Kim, H. Im, J. Kim and J. Kim, Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites, J. Mater. Sci. 47 (2012), p.1418–1426.

DOI: 10.1007/s10853-011-5922-9

Google Scholar

[33] J. Su, Y. Xiao and M. Ren, Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets, Phys. status solidi 210 (2013), p.2699–2705.

DOI: 10.1002/pssa.201330213

Google Scholar

[34] R. Kochetov, T. Andritsch, U. Lafont, P.H.F. Morshuis and J.J. Smit, Thermal conductivity of nano-filled epoxy systems, 2009 IEEE Conf. Electr. Insul. Dielectr. Phenom. (2009), p.658–661.

DOI: 10.1109/ceidp.2009.5377801

Google Scholar

[35] Y.-J. Wan, L.-X. Gong, L.-C. Tang, L.-B. Wu and J.-X. Jiang, Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide, Compos. Part A Appl. Sci. Manuf. 64 (2014), p.79–89.

DOI: 10.1016/j.compositesa.2014.04.023

Google Scholar

[36] S.I. Abdullah and M.N.M. Ansari, Mechanical properties of graphene oxide (GO)/epoxy composites, HBRC J. 11 (2015), p.151–156.

DOI: 10.1016/j.hbrcj.2014.06.001

Google Scholar

[37] Y. Sun, Y. He, B. Tang, C. Tao, J. Ban and L. Jiang, Influence from the types of surface functional groups of RGO on the performances of thermal interface materials, RSC Adv. 7 (2017), p.55790–55795.

DOI: 10.1039/c7ra12034f

Google Scholar