[1]
N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Review of thermal conductivity in composites: Mechanisms, parameters and theory, Prog. Polym. Sci. 61 (2016), p.1–28.
DOI: 10.1016/j.progpolymsci.2016.05.001
Google Scholar
[2]
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil and O. Regev, Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects, Chem. Mater. 27 (2015), p.2100–2106.
DOI: 10.1021/cm504550e
Google Scholar
[3]
W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie et al., Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon N. Y. 49 (2011), p.495–500.
DOI: 10.1016/j.carbon.2010.09.047
Google Scholar
[4]
E.-S. Lee, S.-M. Lee, D.J. Shanefield and W.R. Cannon, Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin, J. Am. Ceram. Soc. 91 (2008), p.1169–1174.
DOI: 10.1111/j.1551-2916.2008.02247.x
Google Scholar
[5]
C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang, J. Luo et al., Enhanced through-plane thermal conductivity of boron nitride/epoxy composites, Compos. Part A Appl. Sci. Manuf. 98 (2017), p.25–31.
DOI: 10.1016/j.compositesa.2017.03.012
Google Scholar
[6]
J.S. Lewis, Z. Barani, A.S. Magana, F. Kargar and A.A. Balandin, Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers, Mater. Res. Express 6 (2019), p.85325.
DOI: 10.1088/2053-1591/ab2215
Google Scholar
[7]
Z. Liu, J. Li and X. Liu, Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties, ACS Appl. Mater. Interfaces 12 (2020), p.6503–6515.
DOI: 10.1021/acsami.9b21467
Google Scholar
[8]
S. Han, Q. Meng, Z. Qiu, A. Osman, R. Cai, Y. Yu et al., Mechanical, toughness and thermal properties of 2D material- reinforced epoxy composites, Polymer (Guildf). 184 (2019), p.121884.
DOI: 10.1016/j.polymer.2019.121884
Google Scholar
[9]
C. Chen, X. Li, Y. Wen, J. Liu, X. Li, H. Zeng et al., Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: A promising strategy for enhancing thermal conductivity of epoxy composites, Compos. Part A Appl. Sci. Manuf. 125 (2019), p.105517.
DOI: 10.1016/j.compositesa.2019.105517
Google Scholar
[10]
Y. Li, H. Zhang, H. Porwal, Z. Huang, E. Bilotti and T. Peijs, Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites, Compos. Part A Appl. Sci. Manuf. 95 (2017), p.229–236.
DOI: 10.1016/j.compositesa.2017.01.007
Google Scholar
[11]
Q. Meng, S. Han, S. Araby, Y. Zhao, Z. Liu and S. Lu, Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives, J. Adhes. Sci. Technol. 33 (2019), p.1337–1356.
DOI: 10.1080/01694243.2019.1595890
Google Scholar
[12]
V. Kavimani, K.S. Prakash, T. Thankachan and R. Udayakumar, Synergistic improvement of epoxy derived polymer composites reinforced with Graphene Oxide (GO) plus Titanium di oxide(TiO2), Compos. Part B Eng. 191 (2020), p.107911.
DOI: 10.1016/j.compositesb.2020.107911
Google Scholar
[13]
M.R. Zakaria, M.H. Abdul Kudus, H. Md. Akil and M.Z. Mohd Thirmizir, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties, Compos. Part B Eng. 119 (2017), p.57–66.
DOI: 10.1016/j.compositesb.2017.03.023
Google Scholar
[14]
Y. Fu, Z. He, D. Mo and S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng. 66 (2014), p.493–498.
DOI: 10.1016/j.applthermaleng.2014.02.044
Google Scholar
[15]
A. Permal, M. Devarajan, H.L. Hung, T. Zahner, D. Lacey and K. Ibrahim, Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management, J. Mater. Eng. Perform. 27 (2018), p.1296–1307.
DOI: 10.1007/s11665-018-3151-y
Google Scholar
[16]
B. Wetzel, F. Haupert and M.Q. Zhang, Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol. 63 (2003), p.2055–(2067).
DOI: 10.1016/s0266-3538(03)00115-5
Google Scholar
[17]
R.M. Rodgers, H. Mahfuz, V.K. Rangari, N. Chisholm and S. Jeelani, Infusion of SiC nanoparticles into SC-15 epoxy: An investigation of thermal and mechanical response, Macromol. Mater. Eng. 290 (2005), p.423–429.
DOI: 10.1002/mame.200400202
Google Scholar
[18]
Z. Han and A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36 (2011), p.914–944.
DOI: 10.1016/j.progpolymsci.2010.11.004
Google Scholar
[19]
C.N.R. Rao, F.L. Deepak, G. Gundiah and A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 31 (2003), p.5–147.
DOI: 10.1016/j.progsolidstchem.2003.08.001
Google Scholar
[20]
C. Huo, Z. Yan, X. Song and H. Zeng, 2D materials via liquid exfoliation: a review on fabrication and applications, Sci. Bull. 60 (2015), p.1994–(2008).
DOI: 10.1007/s11434-015-0936-3
Google Scholar
[21]
B. Pukánszky and E. Fekete, Adhesion and Surface Modification, in Mineral Fillers in Thermoplastics I. Advances in Polymer Science, J. Jancar, E. Fekete, P.R. Hornsby, J. Jancar, B. Pukánszky and R.N. Rothon, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, p.109–153.
DOI: 10.1007/3-540-69220-7
Google Scholar
[22]
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008), p.902–907.
DOI: 10.1021/nl0731872
Google Scholar
[23]
C. Lee, X. Wei, J.W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science (80-. ). 321 (2008), p.385–388.
DOI: 10.1126/science.1157996
Google Scholar
[24]
D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai et al., Electronic structure of graphite oxide and thermally reduced graphite oxide, Carbon N. Y. 49 (2011), p.1362–1366.
DOI: 10.1016/j.carbon.2010.12.002
Google Scholar
[25]
W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958), p.1339.
DOI: 10.1021/ja01539a017
Google Scholar
[26]
A.N. Fouda, M.K.A. Assy, G. El Enany and N. Yousf, Enhanced Capacitance of Thermally Reduced Hexagonal Graphene Oxide for High Performance Supercapacitor, Fullerenes, Nanotub. Carbon Nanostructures 23 (2015), p.618–622.
DOI: 10.1080/1536383x.2014.943889
Google Scholar
[27]
A.E.F. Oliveira, G.B. Braga, C.R.T. Tarley and A.C. Pereira, Thermally reduced graphene oxide: synthesis, studies and characterization, J. Mater. Sci. 53 (2018), p.12005–12015.
DOI: 10.1007/s10853-018-2473-3
Google Scholar
[28]
S. Han, Q. Meng, S. Araby, T. Liu and M. Demiral, Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis, Compos. Part A Appl. Sci. Manuf. 120 (2019), p.116–126.
DOI: 10.1016/j.compositesa.2019.02.027
Google Scholar
[29]
Y. Chen, Y. Niu, T. Tian, J. Zhang, Y. Wang, Y. Li et al., Microbial reduction of graphene oxide by Azotobacter chroococcum, Chem. Phys. Lett. 677 (2017), p.143–147.
DOI: 10.1016/j.cplett.2017.04.002
Google Scholar
[30]
S. Thakur and N. Karak, Green reduction of graphene oxide by aqueous phytoextracts, Carbon N. Y. 50 (2012), p.5331–5339.
DOI: 10.1016/j.carbon.2012.07.023
Google Scholar
[31]
W. Yuan, Q. Xiao, L. Li and T. Xu, Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles, Appl. Therm. Eng. 106 (2016), p.1067–1074.
DOI: 10.1016/j.applthermaleng.2016.06.089
Google Scholar
[32]
J. Kim, H. Im, J. Kim and J. Kim, Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites, J. Mater. Sci. 47 (2012), p.1418–1426.
DOI: 10.1007/s10853-011-5922-9
Google Scholar
[33]
J. Su, Y. Xiao and M. Ren, Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets, Phys. status solidi 210 (2013), p.2699–2705.
DOI: 10.1002/pssa.201330213
Google Scholar
[34]
R. Kochetov, T. Andritsch, U. Lafont, P.H.F. Morshuis and J.J. Smit, Thermal conductivity of nano-filled epoxy systems, 2009 IEEE Conf. Electr. Insul. Dielectr. Phenom. (2009), p.658–661.
DOI: 10.1109/ceidp.2009.5377801
Google Scholar
[35]
Y.-J. Wan, L.-X. Gong, L.-C. Tang, L.-B. Wu and J.-X. Jiang, Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide, Compos. Part A Appl. Sci. Manuf. 64 (2014), p.79–89.
DOI: 10.1016/j.compositesa.2014.04.023
Google Scholar
[36]
S.I. Abdullah and M.N.M. Ansari, Mechanical properties of graphene oxide (GO)/epoxy composites, HBRC J. 11 (2015), p.151–156.
DOI: 10.1016/j.hbrcj.2014.06.001
Google Scholar
[37]
Y. Sun, Y. He, B. Tang, C. Tao, J. Ban and L. Jiang, Influence from the types of surface functional groups of RGO on the performances of thermal interface materials, RSC Adv. 7 (2017), p.55790–55795.
DOI: 10.1039/c7ra12034f
Google Scholar