Fabrication and Characterization Biomimetic Micro Actuators Using Ferrofluid-Silicone Composite Cantilevers

Article Preview

Abstract:

In this paper we have developed a simple and inexpensive method to fabricate cilia-like silicone rubber-ferrofluid composite cantilever beams. The technique described can generate highly reproducible arrays of these microcantilevers ranging from 1 mm to 0.4 mm in diameter. We use a laser cutter to create moulds for the cantilevers making it a low cost and reliable process. The iron particles from the ferrofluid can uniformly dispersed, randomly arranged or isolated on the tip of the cantilever. Cantilevers with 400 μm diameter and up to 10 mm length are tested with low magnetic field of 15mT. We obtained maximum deflection of 82.5o at 44 mT magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-86

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ghanbari, M. Bahrami, A novel swimming microrobot based on artificial cilia for biomedical applications,, Journal of Intelligent & Robotic Systems 63, pp.399-416,(2011).

DOI: 10.1007/s10846-010-9516-6

Google Scholar

[2] S. Odenbach, Ferrofluidsmagnetically controlled suspensions, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 217, pp.171-178,(2003).

DOI: 10.1016/s0927-7757(02)00573-3

Google Scholar

[3] Z. Ding, P. Wei, B. Ziaie, Ferro-paper actuators,, in: Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, IEEE, pp.1127-1130.

DOI: 10.1109/memsys.2010.5442409

Google Scholar

[4] Zaibudeen, A.W. and Philip, J., 2018. Temperature and pH sensor based on functionalized magnetic nanofluid. Sensors and Actuators B: Chemical, 268, pp.338-349.

DOI: 10.1016/j.snb.2018.04.098

Google Scholar

[5] G. Filipcsei, I. Csetneki, A. Szilagyi, M. Zrinyi, Magnetic field-responsive smart polymer composites,, in: Oligomers-Polymer Composites-Molecular Imprinting, Springer, 2007, pp.137-189.

DOI: 10.1007/12_2006_104

Google Scholar

[6] Doganay, S., Cetin, L., Ezan, M.A. and Turgut, A., 2020. A rotating permanent magnetic actuator for micropumping devices with magnetic nanofluids. Journal of Micromechanics and Microengineering, 30(7), p.075012.

DOI: 10.1088/1361-6439/ab8dd1

Google Scholar

[7] J. D. Carlson, M. R. Jolly, Mr fluid, foam and elastomer devices,, mechatronics 10, pp.555-569, (2000).

DOI: 10.1016/s0957-4158(99)00064-1

Google Scholar

[8] R. Perez-Castillejos, J. Plaza, J. Esteve, P. Losantos, M. Acero, C. Cane, F. Serra-Mestres, The use of ferrofluids in micromechanics,, Sensors and Actuators A: Physical 84, pp.176-180, (2000).

DOI: 10.1016/s0924-4247(99)00318-0

Google Scholar

[9] Shawgo, R.S., Grayson, A.C.R., Li, Y. and Cima, M.J., 2002. BioMEMS for drug delivery. Current Opinion in Solid State and Materials Science, 6(4), pp.329-334.

DOI: 10.1016/s1359-0286(02)00032-3

Google Scholar

[10] Banis, G., Tyrovolas, K., Angelopoulos, S., Ferraro, A. and Hristoforou, E., 2020. Pushing of Magnetic Microdroplet Using Electromagnetic Actuation System. Nanomaterials, 10(2), p.371.

DOI: 10.3390/nano10020371

Google Scholar

[11] B. Evans, A. Shields, R. L. Carroll, S. Washburn, M. Falvo, R. Superfine, Magnetically actuated nanorod arrays as biomimetic cilia,, Nano letters7, pp.1428-1434, (2007).

DOI: 10.1021/nl070190c

Google Scholar