[1]
Naila, A., Flint, S.H., Sulaiman, A.Z., Ajit, A., & Weeds, Z. (2018). Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control, 90, 152-165.
DOI: 10.1016/j.foodcont.2018.02.027
Google Scholar
[2]
Firdaus, A., Khalid, J., & Yong, Y.K. (2018). Malaysian Tualang Honey and Its Potential Anti-Cancer Properties: A Review. Sains Malaysiana, 47(11), 2705-2711.
DOI: 10.17576/jsm-2018-4711-14
Google Scholar
[3]
Nayik, G.A., & Nanda, V. (2016). Application of response surface methodology to study the combined effect of temperature, time and pH on antioxidant activity of cherry (Prunus avium) honey. Polish Journal of Food and Nutrition Sciences, 66(4), 287-294.
DOI: 10.1515/pjfns-2015-0055
Google Scholar
[4]
Moniruzzaman, M., Amrah Sulaiman, S., & Gan, S.H. (2017). Phenolic acid and flavonoid composition of malaysian honeys. Journal of Food Biochemistry, 41(2), e12282.
DOI: 10.1111/jfbc.12282
Google Scholar
[5]
Habryka, C., Socha, R., & Juszczak, L. (2020). The Effect of Enriching Honey with Propolis on the Antioxidant Activity, Sensory Characteristics, and Quality Parameters. Molecules, 25(5), 1176.
DOI: 10.3390/molecules25051176
Google Scholar
[6]
Portokalakis, I., Yusof, H.M., Ghanotakis, D.F., Nigam, P.S., & Owusu-Apenten, R. (2016). Manuka honey-induced cytotoxicity against MCF7 breast cancer cells is correlated to total phenol content and antioxidant power. Journal of Advances in Biology & Biotechnology, 1-10.
DOI: 10.9734/jabb/2016/27899
Google Scholar
[7]
Adalina, Y., Kusmiati, E., & Pudjiani, M. (2020, September). Phytochemical test and physical chemical properties of rubber honey from three types of bees (Apis mellifera, Apis dorsata and Trigona Itama). In IOP Conference Series: Materials Science and Engineering (Vol. 935, No. 1, p.012007). IOP Publishing.
DOI: 10.1088/1757-899x/935/1/012007
Google Scholar
[8]
da Silva, P.M., Gauche, C., Gonzaga, L.V., Costa, A.C.O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food chemistry, 196, 309-323.
DOI: 10.1016/j.foodchem.2015.09.051
Google Scholar
[9]
Cokcetin, N.N., Pappalardo, M., Campbell, L.T., Brooks, P., Carter, D.A., Blair, S.E., & Harry, E.J. (2016). The antibacterial activity of Australian Leptospermum honey correlates with methylglyoxal levels. PloS one, 11(12), e0167780.
DOI: 10.1371/journal.pone.0167780
Google Scholar
[10]
Go, B., Sa, B., To, L., & Co, O. (2018). Quality Assessment of Nigerian Multiflora Honey Marketed in Ogbomoso Region. Carpathian Journal of Food Science & Technology, 10(3).
Google Scholar
[11]
Singh, I., & Singh, S. (2018). Honey moisture reduction and its quality. Journal of food science and technology, 55(10), 3861-3871.
DOI: 10.1007/s13197-018-3341-5
Google Scholar
[12]
Song, X., She, S., Xin, M., Chen, L., Li, Y., Vander Heyden, Y., ... & Chen, L. (2020). Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics. Journal of Food Composition and Analysis, 86, 103390.
DOI: 10.1016/j.jfca.2019.103390
Google Scholar
[13]
Oroian, M., Ropciuc, S., & Paduret, S. (2018). Honey adulteration detection using Raman spectroscopy. Food analytical methods, 11(4), 959-968.
DOI: 10.1007/s12161-017-1072-2
Google Scholar
[14]
Ghramh, H.A., Khan, K.A., Ahmed, Z., & Ansari, M.J. (2020). Quality evaluation of Saudi honey harvested from the Asir province by using high-performance liquid chromatography (HPLC). Saudi Journal of Biological Sciences. 27, 2097-2105.
DOI: 10.1016/j.sjbs.2020.04.009
Google Scholar
[15]
Mukhtar, W.M., Halim, R.M., Dasuki, K.A., Rashid, A.R.A., & Taib, N.A.M. (2017). SPR sensor for detection of heavy metal ions: Manipulating the EM waves polarization modes. Malaysian Journal of Fundamental and Applied Sciences.
DOI: 10.11113/mjfas.v13n4.748
Google Scholar
[16]
Mukhtar, W.M., Shaari, S., & Menon, P. S. (2013). Influences of light coupling techniques to the excitation of surface plasmon polaritons. Advanced Science Letters, 19(1), 66-69.
DOI: 10.1166/asl.2013.4712
Google Scholar
[17]
Murat, N.F., Mukhtar, W.M., Rashid, A.R.A., Dasuki, K.A., & Yussuf, A.A.R.A. (2016, August). Optimization of gold thin films thicknesses in enhancing SPR response. In 2016 IEEE International Conference on Semiconductor Electronics (ICSE) (pp.244-247). IEEE.
DOI: 10.1109/smelec.2016.7573637
Google Scholar
[18]
Menon, P.S., Gan, S.M., Mohamad, N.R., Jamil, N.A., Tarumaraja, K.A., Razak, N.R., Bakar, A.A.A., Mukhtar, W.M., Murat, N.F., Mohamed, R. and Khairulazdan, N.B. (2019, July). Kretschmann based Surface Plasmon Resonance for Sensing in Visible Region. In 2019 IEEE 9th International Nanoelectronics Conferences (INEC) (pp.1-6). IEEE.
DOI: 10.1109/inec.2019.8853847
Google Scholar
[19]
Shah, K., Sharma, N.K., & Sajal, V. (2018). Analysis of fiber optic SPR sensor utilizing platinum based nanocomposites. Optical and Quantum Electronics, 50(6), 265.
DOI: 10.1007/s11082-018-1533-x
Google Scholar
[20]
Mukhtar, W.M., Shaari, S., & Menon, P. S. (2013). Gold nanoparticles grown using modified seed-mediated growth technique. Advanced Science Letters, 19(5), 1412-1415.
DOI: 10.1166/asl.2013.4475
Google Scholar
[21]
Samsuri, N.D., Mukhtar, W.M., Rashid, A.R.A., Dasuki, K.A., & Yussuf, A.A.R.H.A. (2017). Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR) sensor applications. In EPJ Web of Conferences (Vol. 162, p.01002). EDP Sciences.
DOI: 10.1051/epjconf/201716201002
Google Scholar
[22]
Ghosh, S.K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chemical reviews, 107(11), 4797-4862.
DOI: 10.1021/cr0680282
Google Scholar
[23]
Napi, M.L.M., Noorden, A.F.A., Tan, M.L.P., Jamaluddin, H., Abd Hamid, F., Ahmad, M.K., Hashim, U., Ahmad, M.R. & Sultan, S.M. (2020). Three Dimensional Zinc Oxide Nanostructures as an Active Site Platform for Biosensor: Recent Trend in Healthcare Diagnosis. Journal of The Electrochemical Society, 167(13), 137501.
DOI: 10.1149/1945-7111/abb4f4
Google Scholar
[24]
Feng, B., Zhu, R., Xu, S., Chen, Y., & Di, J. (2018). A sensitive LSPR sensor based on glutathione-functionalized gold nanoparticles on a substrate for the detection of Pb 2+ ions. RSC advances, 8(8), 4049-4056.
DOI: 10.1039/c7ra13127e
Google Scholar
[25]
Mukhtar, W.M., Latib, S.N., Halim, R.M., & Rashid, A.R.A. (2020). Graphene Based Macrobend Unclad SMF for Monitoring pH Level in Aqueous Environment. In Solid State Phenomena (Vol. 307, pp.78-83). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/ssp.307.78
Google Scholar
[26]
Rashid, A.R.A., Nasution, A.A., Suranin, A.H., Taib, N.A., Mukhtar, W.M., Dasuki, K.A., & Ehsan, A.A. (2017). Chemical tapering of polymer optical fiber. In EPJ Web of Conferences (Vol. 162, p.01015). EDP Sciences.
DOI: 10.1051/epjconf/201716201015
Google Scholar
[27]
Sakib, M.N., Hossain, M.B., Al-tabatabaie, K.F., Mehedi, I.M., Hasan, M.T., Hossain, M.A., & Amiri, I.S. (2019). High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results in Physics, 15, 102788.
DOI: 10.1016/j.rinp.2019.102788
Google Scholar
[28]
Mukhtar, W.M., Menon, P.S., & Shaari, S. (2012). Microfabricated fiber probe by combination of electric arc discharge and chemical etching techniques. In Advanced Materials Research (Vol. 462, pp.38-41). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amr.462.38
Google Scholar
[29]
Kalyani, V.L., & Sharma, V. (2016). Different types of optical filters and their realistic application. Journal of Management Engineering and Information Technology (JMEIT), 3(3).
Google Scholar
[30]
Mukhtar, W.M., & Zailani, N.S.M. (2020, May). Study on the Sensitivity of Bare Fiber Bragg Grating for Ultrasonic Frequencies Response Under Various Temperature. In Journal of Physics: Conference Series (Vol. 1551, No. 1, p.012013). IOP Publishing.
DOI: 10.1088/1742-6596/1551/1/012013
Google Scholar
[31]
Li, T., Tan, Y., Zhou, Z., & Zheng, K. (2016). A non-contact FBG vibration sensor with double differential temperature compensation. Optical Review, 23(1), 26-32.
DOI: 10.1007/s10043-015-0153-y
Google Scholar
[32]
Hong, C., Zhang, Y., Yang, Y., & Yuan, Y. (2019). A FBG based displacement transducer for small soil deformation measurement. Sensors and Actuators A: Physical, 286, 35-42.
DOI: 10.1016/j.sna.2018.12.022
Google Scholar
[33]
Hong, C., Zhang, Y., & Borana, L. (2019). Design, fabrication and testing of a 3D printed FBG pressure sensor. IEEE Access, 7, 38577-38583.
DOI: 10.1109/access.2019.2905349
Google Scholar
[34]
Kaur, G., & Tarsikka, P.S. (2016). Physicochemical Properties of Indian Honey at Different Concentrations and Temperatures. International Journal of Environment, Agriculture and Biotechnology, 1(4), 238625.
DOI: 10.22161/ijeab/1.4.51
Google Scholar
[35]
Moise, G. (2015). Research on quality analysis of an assortment of five types of honey in Romania. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 15(3), 195–199.
Google Scholar
[36]
Subari, N., Mohamad Saleh, J., Md Shakaff, A.Y., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors, 12(10), 14022-14040.
DOI: 10.3390/s121014022
Google Scholar
[37]
Hoo, X.F., Razak, K.A., Ridhuan, N.S., Nor, N.M., & Zakaria, N.D. (2017, September). Synthesis of tunable size gold nanoparticles using seeding growth method and its application in glucose sensor. In AIP Conference Proceedings (Vol. 1877, No. 1, p.030001). AIP Publishing LLC.
DOI: 10.1063/1.4999857
Google Scholar