[1]
Habib, M.A.; Ismail, I.M.I.; Mahmood, A.J. and Ullah, M.R. 2012. Photocatalytic decolorization of Brilliant Golden Yellow in TiO2 and ZnO suspensions, Journal of Saudi Chemical Society, vol. 16, pp.423-429.
DOI: 10.1016/j.jscs.2011.02.013
Google Scholar
[2]
Dilaeleyana, A.B.S.; Nur, H.H.H; Nur, Z.Z.; Amira, L.D.; Nurasyikin, M; Norhaniza, Y; Ong, C.B.; Abdul, W.M. and Nur, S.M.A. 2018. Photocatalytic Degradation of Industrual Dye Wastewater using Zinc Oxide-Polyvinylpyrrolidone Nanoparticles, Malaysian Journal of Analytical Sciences, vol. 22 (4), pp.693-701.
DOI: 10.17576/mjas-2018-2204-16
Google Scholar
[3]
Yaser, A.Z. and Pogaku, R. 2017. Recent Trends for the Removal of Coloured Particles in Industrial Wastewaters, Environmental Science and Pollution Research, vol. 24 (19), pp.15861-15862.
DOI: 10.1007/s11356-017-9555-7
Google Scholar
[4]
Sowmyashree, V.C.; Tejaswini, N and Bhagwat, R.S. 2015. Removal of Reactive Blue Dye from Aqueous Solution using Neem Leaves Powder as a Adsorbent, International Journal of ChemTech Research, vol. 4 (8), pp.117-120.
Google Scholar
[5]
Guillard, C; Lachheb, H; Houas, A; Ksibi, M; Elaloui, E and Hermann, J. M. 2003. Influence of chemical structure of dyes, of Ph and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol. A: Chem., vol. 158, pp.27-36.
DOI: 10.1016/s1010-6030(03)00016-9
Google Scholar
[6]
Yusoff, N.A; Ho, L.N; Ong, S.A; Wong, Y. Sand Khalik, W.F. 2016. Photocatalytic activity of zinc oxide (ZnO) synthesized through different methods, Desalination and Water Treatment, vol. 57 (27), pp.12496-12507.
DOI: 10.1080/19443994.2015.1054312
Google Scholar
[7]
Wang, D and Zhu, S. 2017. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities, Advanced Energy Materials, vol. 7, p.1700841 (1-24).
DOI: 10.1002/aenm.201700841
Google Scholar
[8]
Crini, G and Lichtfouse, E. 2019. Advantages and disadvantages of techniques used for wastewater treatment, Environmental Chemistry Letters, vol. 17, pp.145-155.
DOI: 10.1007/s10311-018-0785-9
Google Scholar
[9]
Islam, M.S; Hossain, M.F and Razzak, S.M.A. 2015. Zinc Oxide Thin Film Fabricated by Thermal Evaporation Method for Water Splitting Application, 1st International Conference on Electrical & Electronic Engineering (ICEEE), pp.1-4.
DOI: 10.1109/ceee.2015.7428270
Google Scholar
[10]
Sobczynski, A and Dobosz, A. 2001. Water purification by photocatalysis on semiconductors, Polish Journal of Environmental Studies, vol. 10 (4), pp.195-205.
Google Scholar
[11]
Mondal, K and Sharma, A. 2014. Photocatalytic Oxidation of Pollutant Dyes in Wastewater by TiO2 and ZnO nanomaterials – A Mini Review, Nanoscience & Technology for Mankind, pp.36-72.
Google Scholar
[12]
Islam, M.S; Hossain, M.F; Razzak, S.M.A; Haque, M.M and Saha, D.K. 2016. Effect of Deposition Time on Nanostructure ZnO Thin Films Synthesized by Modified Thermal Evaporation Technique, Journal of Nanoscience and Nanotechnology, vol. 16, pp.9190-9194.
DOI: 10.1166/jnn.2016.12901
Google Scholar
[13]
Zahedi, F; Dariani, R.S; Rozati, S.M. 2014. Structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis: Effect of precursor concentration, Bulletin Material Science, vol. 37, pp.433-439.
DOI: 10.1007/s12034-014-0696-8
Google Scholar
[14]
Dorozhan, O; Kurbatov, D; Opanasyuk, A; Cheong, H; Cabot, A. 2015. Influence of substrate temperature on the structural and optical properties of crystallie ZnO films obtained by pulsed spray pyrolysis, Surface and Interface Analysis, vol. 47, pp.601-606.
DOI: 10.1002/sia.5752
Google Scholar
[15]
Laurenti, M and Cauda, V. 2018. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications, Coatings, vol. 8 (67).
DOI: 10.3390/coatings8020067
Google Scholar
[16]
Aisah, N; Gustiono, D; Fauzia, V; Sugihartono, I and Nuryadi, R. 2017. Synthesis and Enhanced Photocatalytic Activity of Ce-Doped Zinc Oxide Nanorods by Hydrothermal Method, IOP Conference Series: Materials Science and Engineering, vol. 172.
DOI: 10.1088/1757-899x/172/1/012037
Google Scholar
[17]
Lashkova, N.A; Fedoseev, A.G and Matyushkin, L.B. 2017. ZnO and aluminium doped ZnO thin films synthesis by ultrasonic spray pyrolysis technique. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp.1391-1393.
DOI: 10.1109/eiconrus.2017.7910829
Google Scholar
[18]
Murali, A; Sarswat, P.K and Sohn, H.Y. 2019. Enhanced photocatalytic activity and photocurrent properties of plasma-synthesized indium-doped zinc oxide nanopowder, Materials Today Chemistry, vol. 11, pp.60-68.
DOI: 10.1016/j.mtchem.2018.10.007
Google Scholar
[19]
Abdulgafour, H.I; Jawad, M.J; Hassan. Z; Heuseen, K and Yam, F.K. 2011. ZnO nanocoral reef grown on porous silicon substrates without catalyst, Journal of Alloys and Compounds, vol. 509, pp.5627-5630.
DOI: 10.1016/j.jallcom.2011.02.100
Google Scholar
[20]
Sarangan, A. 2016. Physical and Chemical Vapor Deposition from: Nanofabrication, Priciples to laboratory Practice, CRC Press, pp.53-98.
Google Scholar
[21]
Adachi, H; Wasa, K and Kitabatake, M. 2012. Thin Films and Nonomaterials. Sputtering of Compound Materials. Springer-Verlag Berlin Heidelberg. Norwich:USA.
Google Scholar
[22]
Arunkumar, P; Kuan, S.K and Babu, K.S. 2015. Thin Film: Deposition, Growth Aspects, and Characterization. In: Babu Krishna Moorthy S. (eds) Thin Film Strucures in Energy Applications. Springer, Cham.
DOI: 10.1007/978-3-319-14774-1_1
Google Scholar
[23]
Levy, F. 2016. Film Growth and Epitaxy: Methods, Condensed Matter Physics, pp.210-222.
Google Scholar
[24]
Yao, B.D; Chan, Y.F and Wang, N. 2002. Formation of ZnO nanostructures by a simple way of thermal evaporation, Applied Physics Letters, vol. 81 (4), pp.756-759.
DOI: 10.1063/1.1495878
Google Scholar
[25]
Musaab, K.M and Khalid, H.A. 2016. Effect of Al-doping on the Optical Properties of ZnO Thin Film Prepared by Thermal Evaporation Technique, International Journal of Engineering and Technologies, vol. 7, pp.25-31.
DOI: 10.18052/www.scipress.com/ijet.7.25
Google Scholar
[26]
Rashad, M; Shaalan, N.M and Abd-Elnaiem, A.M. 2016. Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique, Desalination and Water Treatment, pp.1-7.
DOI: 10.1080/19443994.2016.1163511
Google Scholar
[27]
Shaalan, N.M; Hafiz, M.M and Rashad, M. 2015. Enhanced Photocatalytic of ZnO Nanostructures via Shape Controlled Platinum Thin Film, Digest Journal of Nanomaterials and Biostructures, vol. 10 (3), pp.823-830.
Google Scholar
[28]
Loeb, S.K; Alvarez, P.J.J; Brame, J.A; Cates, E.L; Choi, W.Y; Crittenden, J; Dionysiou, D.D; Li, Q; Li-Puma, G; Quan, X; Sedlak, D.L; Waite, T.D; Westerhoff, P and Kim, J.H. 2019. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?, Environmental Science and Technology, vol. 53, pp.2937-2947.
DOI: 10.1021/acs.est.8b05041
Google Scholar
[29]
Amjed, M.O; Kadhum, S.H; Farhood, A.S and Alkadhum, H.A. 2013. Photocatalytic activity of silvered zinc oxide stabilized on cotton fiber for methylene blue dye decolorization, International Journal of Environmental & Water, vol. 2 (2), pp.119-123.
Google Scholar
[30]
Sakthivel, S; Neppolian, B; Shankar, B.V; Arabindoo, B; Palanichamy, M and Murugesan, V. 2003. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, vol. 77 (1), pp.65-82.
DOI: 10.1016/s0927-0248(02)00255-6
Google Scholar
[31]
Abo, R; Kummer, N.A and Merkel, B.J. 2016. Optimized photodegradation of Bisphenol A in water using ZnO, TiO2 and SnO2 photocatalys under UV radiation as a decontamination procedure, Drink. Water Eng. Sci., vol. 9, pp.27-35.
DOI: 10.5194/dwes-2016-5-rc1
Google Scholar
[32]
Shinde, D.R; Tambade, P.S; Chaskar, M.G and Gadave, K.M. 2017. Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2: a comperative study, Drinking Water Engineering and Science, vol. 10, pp.109-117.
DOI: 10.5194/dwes-10-109-2017
Google Scholar
[33]
Goswami, D.Y; Ram, M.K; Stefanakos, E.K and Zhang, Y. 2012. Synthesis, Characterization, and Applications of ZnO Nanowires, Journal of Nanomaterials, vol. 2012, pp.1-22.
DOI: 10.1155/2012/624520
Google Scholar
[34]
Guy, N; Turkyilmaz, S.S and Ozacar, M. 2017. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals, Journal of Photochemistry and Photobilogy A: Chemistry, http://dx.doi.org/10.1016/j.jphotochem.2017.03.027.
DOI: 10.1016/j.jphotochem.2017.03.027
Google Scholar
[35]
Aadim, K; A Muslim, Z.R and Kadhim, R.F. 2017. Preparation of ZnO for Photocatalytic Activity of Methylene Blue Dye, International Journal of Basic and Applied Science, vol. 6 (1), pp.1-7.
DOI: 10.17142/ijbas-2017.6.1.1
Google Scholar
[36]
Nickheslat, A; Amin, M.M; Izanloo, H; Fatehizadeh, A and Mousavi, S.M. 2013. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Umltraviolet Radiation using Titanium Dioxide, Journal of Environmental and Public Health, pp.1-9.
DOI: 10.1155/2013/815310
Google Scholar
[37]
Zhao, Y; Li, C; Chen, M; Yu, X; Chang, Y; Chen, A; Zhu, H and Tang, Z. 2016. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapour deposition, Physics Letters A, vol. 12 (26), pp.1-5.
DOI: 10.1016/j.physleta.2016.06.030
Google Scholar
[38]
Fang, Y; Sha, J; Wang, Y, Wang. Z and Wan, Y. 2010. Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation, The Journal of Physical Chemistry C, vol. 114(29), pp.12469-12476.
DOI: 10.1021/jp103711m
Google Scholar
[39]
Atif, M; Alam, M.F; Asghar, M.A; Nazar, U; Javed, S; Iqbal, Z; Ali, S.M and Farooq, W.A. 2014. Characterization of Zinc Oxide (ZnO) Thin Film Coated by Thermal Evaporation Technique, Journal of Optoelectronics and Biomedical Materials, vol. 6(2), pp.35-40.
Google Scholar
[40]
Alsuhtany, F.H; Hassan, Z and Ahmed, N.M. 2016. Control growth of catalyst-free ZnO tetrapods on glass substrate by thermal evaporation method, Ceramics International, pp.1-7.
DOI: 10.1016/j.ceramint.2016.05.102
Google Scholar
[41]
Fang, F; Zhao, D.X; Zhang, J. Y; Shen, D.Z; Lu, Y.M; Fan, X.W; Li, B.H and Wang, X.H. 2008. The influence of growth temperature on ZnO nanowires, Materials Letters, vol. 62, pp.1092-1095.
DOI: 10.1016/j.matlet.2007.07.073
Google Scholar
[42]
Sakrani, S; Jamaludin, N; Muhammad, R; Wahab, Y; Ismail, A.K; Suhaimi, S and Mohammed, Y.H. 2016. Effect of gas flow rate on structural properties of zinc oxide nanowires grown by vapour-solid mechanism, AIP Conference Proceedings, vol. 1733 (1).
DOI: 10.1063/1.4948858
Google Scholar
[43]
Suhaimi, S; Sakrani, S; Dorji, T and Ismail, K. 2014. A catalyst-free growth of aluminium-doped ZnO nanorods by thermal evaporation, Nanoscale Research Letters, vol. 9 (256), pp.1-10.
DOI: 10.1186/1556-276x-9-256
Google Scholar
[44]
Mugwang'a, F.K; Karimi, P.K; Njorege, W.K and Omayio, O. 2015. Characterization of Aluminium Doped Zinc Oxide (Azo) Thin Films Prepared by Reactive Thermal Evaporation for Solar Cell Applications, Journal of Fundamentals of Renewable Energy and Applications, vol. 5(4), pp.1000170-1000175.
DOI: 10.4172/2090-4541.1000170
Google Scholar
[45]
Deam, A.R and Muhammad, S.K. 2016. Efffect of Copper Doping on the Structural and Optical Properties of ZnO Thin Films Prepared by Thermal Evaporation Method, Journal of Applied Physical Science International, vol. 7(1), pp.35-41.
Google Scholar
[46]
Lee, Y.M; Huang, c. m; Chen, H.W and Yang, H.W. 2013. Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors, Sensors and Actuators A: Physical, vol. 189, pp.307-312.
DOI: 10.1016/j.sna.2012.10.012
Google Scholar
[47]
Vomiero, A; Bianchi, S; Comini, E; Ferroni, M; Poli, N and Sberveglieri. G. 2007. In2O3 nanowires for gas sensors: morphology and sensing characterisation, Thin Solid Films, vol. 515, pp.8356-8399.
DOI: 10.1016/j.tsf.2007.03.034
Google Scholar
[48]
Chang, C.C and Chang, C.S. 2004. Growth of ZnO Nanowires without Catalyst on Porous Silicon, Japanese Journal of Applied Physics, vol. 43(12), pp.8360-8364.
DOI: 10.1143/jjap.43.8360
Google Scholar
[49]
Rusli, N.I; Hashim, A.M; Mahmood, M.R; Tanikawa, M and Yasui, K. 2012. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation, Materials, vol. 5, pp.2817-2832.
DOI: 10.3390/ma5122817
Google Scholar
[50]
Sakrani, S; Amin, P.O. and Suhaimi, S. 2013. Zinc Oxide Nanowires Synthesized using a Hot Tube Thermal Evaporation under Intermediate Heating Period, Malaysian Journal of Fundamental and Applied Sciences, vol. 9(4), pp.201-205.
DOI: 10.11113/mjfas.v9n4.109
Google Scholar
[51]
Awad, M.A; Ahmed, A.M and Ibrahim, E.M.M. 2015. The Effect of Temperature and Oxygen Flow Rate on the Morphology of ZnO Nanostructures, International Journal of New Horizons in Physics, vol. 2, pp.59-61.
Google Scholar
[52]
Babu, E.S; Kim, S, Ganesh, V; Guduru, R.K; Ravi, G; Saravanakumar, B and Yuvakkumar, R. 2018. Zinc oxide nanotips growth by controlling vapour deposition on substrates, Journal of Materials Science: Materials in Electronics, vol. 29, pp.6149-6156.
DOI: 10.1007/s10854-018-8589-z
Google Scholar
[53]
Basu, A; Domb, J.A; Farah, S; Kunduru, K.R; Nazarkovsky, M and Pawar, R. P. 2017. Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment, Academic Press, pp.33-74.
DOI: 10.1016/b978-0-12-804300-4.00002-2
Google Scholar
[54]
Bennani, K.A.; Mounir, B.; Hachkar, M.; Bakasse, M. and Yaacoubi, A. 2017. Adsorption/Desorption Behavior of Cationic Dyes on Moroccan Clay: Equilibrium and Mechanism, Journal of Materials and Environmental Science, vol. 8(3), p.1082–1096.
Google Scholar
[55]
Borysiewicz, M.A. 2019. ZnO as a Functional Material, a Review, Crystals, vol. 9 (505).
Google Scholar
[56]
Dave, P.Y; Patel, K.H; Chauhan, K.V; Chawla, A.K and Rawal, S.K. 2016. Examination of zinc oxide films prepared by magnetron sputtering, Procedia Technology, vol. 23, pp.328-335.
DOI: 10.1016/j.protcy.2016.03.034
Google Scholar
[57]
Deak, G; Dumitru, F.D; Moncea, M.A; Panait, A.M; Baraitaru, A.G; Olteanu, M.V; Boboc, M.G and Stanciu, S. 2019. Synthesis of ZnO Nanoparticles for Water Treatment Applications, International Journal of Conservation Science, vol. 10(2), pp.343-350.
Google Scholar
[58]
Islam, M.R; Farhad, S.F.U; Podder, J and Rahman, M. 2019. Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films, Surfaces and Interfaces, vol. 16 (2019), pp.120-126.
DOI: 10.1016/j.surfin.2019.05.007
Google Scholar
[59]
Jiang, Z; Soltanian, S; Gholamkhass, B; Aljaafari, A; Servati, P. 2018. Light-soaking free organic photovoltaic devices with sol-gel deposited ZnO and AZO electron transport layers, RSC Adv, vol. 8, pp.36542-36548.
DOI: 10.1039/c8ra07071g
Google Scholar
[60]
Feynman, R.P. 1960. There's plenty of room at the bottom, Engineering and Science, vol. 23 (5), pp.22-36.
Google Scholar
[61]
Habba, Y.G; Gnambodoe, M.C; Serairi, L and Wang, Y.L. 2016, Enhanced photocatalytic activity of ZnO nanostructure for water purification, Physica Status Solidi (B): Basic Solid State Physics, pp.1-5.
DOI: 10.1002/pssb.201600031
Google Scholar
[62]
Habba, Y.G; Gnambodoe, M.C; Serairi, L and Wang, Y.L. 2017. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification, Applied Sciences, vo. 7, p.1185.
DOI: 10.3390/app7111185
Google Scholar
[63]
Khan, I; Saeed, K and Khan, I. 2019. Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, vol. 12 (7), pp.908-931.
DOI: 10.1016/j.arabjc.2017.05.011
Google Scholar
[64]
Mugwang'a, F.K; Karimi, P.K; Njorege, W.K and Omayio, O. 2015. Characterization of Aluminium Doped Zinc Oxide (Azo) Thin Films Prepared by Reactive Thermal Evaporation for Solar Cell Applications, Journal of Fundamentals of Renewable Energy and Applications, vol. 5(4), pp.1000170-1000175.
DOI: 10.4172/2090-4541.1000170
Google Scholar
[65]
Somvanshi, D and Jit, S. 2013. Synthesis and optical properties of zinc oxide nanoparticles grown on Sn-coated silicon substrate by thermal evaporation method, Proceedings of SPIE – The International Society for Optical Engineering, vol. 8760, pp. 87600G-1 – 87600G-6.
DOI: 10.1117/12.2010345
Google Scholar
[66]
Tian, T; Xing, J.J; Cheng, L; Zheng, L; Ruan, W; Ruan, X and Li, G. 2015. Synthesis of large size ZnO microrods by a simple way of thermal evaporation, Ceramics International.
DOI: 10.1016/j.ceramint.2015.03.136
Google Scholar
[67]
Yousefi, R; Azarang, M; Basirun, W.J; Cheraghizade, M; Huang, N.M; Gandomani, S.K; Sheini, F.J and Saedi, A. 2015. Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles, Materials Science in Semiconductor Processing, vol. 32, pp.152-159.
DOI: 10.1016/j.mssp.2015.01.013
Google Scholar