Electronic and Optical Properties of Single-Walled Carbon Nanotube Functionalized by CH3COOH

Article Preview

Abstract:

Organic functionalization of carbon nanotubes (CNTs) plays very important role in the development of electrochemical biosensors. In this study, pristine (5,5) carbon nanotube was functionalized by Ethanoic Acid (CH3COOH) using First Principles Density Functional Theory (DFT). It was found that the encapsulation of CH3COOH into the (5,5) CNT is endothermic due to the small diameter of the tube. However, interacting it outside the sidewall of the tube gives an exothermic process indicating a stable geometry. Accordingly, additional electronic bands and peaks are observed in the electronic structures of the functionalized CNT. Further, it was shown that that the p orbitals of the oxygen atoms and carbon atoms of the acid are the main contributors of the additional peaks in the valence and conduction regions, respectively. Finally, there were observed optical transitions in the functionalized CNT caused by the hybridization of the armchair CNT. Evidently, this study provided insights on more potential applications of carbon nanotubes as biosensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-33

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Al-Jumaili, S. Alancherry, K. Bazaka, & M. V. Jacob, Review on the antimicrobial properties of carbon nanostructures, Materials, 10(9) (2017) 1066.

DOI: 10.3390/ma10091066

Google Scholar

[2] O. Mykhailiv, H. Zubyk, & M. E. Plonska-Brzezinska, Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications, Inorganica Chimica Acta, 468 (2017) 49-66.

DOI: 10.1016/j.ica.2017.07.021

Google Scholar

[3] S. Khanna, Carbon Nanotubes: Properties and Applications. In Carbon Nanotubes and Nanoparticles, Apple Academic Press, (2019) 195-216.

DOI: 10.1201/9780429463877-10

Google Scholar

[4] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, & A. K. Geim, The electronic properties of graphene, Reviews of modern physics, 81(1) (2009) 109.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[5] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, & Y. Achiba, Optical properties of single-wall carbon nanotubes, Synthetic metals, 103(1-3) (1999) 2555-2558.

DOI: 10.1016/s0379-6779(98)00278-1

Google Scholar

[6] S. H. Lim, H. I. Elim, X. Y. Gao, A. T. S. Wee, W. Ji, J. Y. Lee, & J. Lin, Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes, Physical Review B, 73(4) (2006) 045402.

DOI: 10.1103/physrevb.73.045402

Google Scholar

[7] J. Jyoti, S. Basu, B. P. Singh, & S. R. Dhakate, Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites, Composites Part B: Engineering, 83 (2015)58-65.

DOI: 10.1016/j.compositesb.2015.08.055

Google Scholar

[8] Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. Amer, & C. Zhou, Review of electronics based on single-walled carbon nanotubes, Single-Walled Carbon Nanotubes, (2019) 189-224.

DOI: 10.1007/978-3-030-12700-8_7

Google Scholar

[9] W. Zhou, X. Bai, E. Wang, & S. Xie, Synthesis, structure, and properties of single‐walled carbon nanotubes, Advanced Materials, 21(45) (2009) 4565-4583.

DOI: 10.1002/adma.200901071

Google Scholar

[10] D. Mitin, Y. Berdnikov, A. Vorobyev, A. Mozharov, S. Raudik, O. Koval,... & I. Mukhin, Optimization of optoelectronic properties of patterned single-walled carbon nanotube films, ACS Applied Materials & Interfaces, 12(49) (2020) 55141-55147.

DOI: 10.1021/acsami.0c14783

Google Scholar

[11] Y. Feng, T. Inoue, H. An, R. Xiang, S. Chiashi, & S. Maruyama, Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes, Applied Physics Letters, 112(19) (2018) 191904.

DOI: 10.1063/1.5021696

Google Scholar

[12] T. Qian, J. Li, & W. Feng, Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material, Energy Conversion and Management, 143 (2017) 96-108.

DOI: 10.1016/j.enconman.2017.03.065

Google Scholar

[13] L. Piao, Q. Liu, & Y. Li, Interaction of amino acids and single-wall carbon nanotubes, The Journal of Physical Chemistry C, 116(2) (2012) 1724-1731.

DOI: 10.1021/jp2085318

Google Scholar

[14] Y. Shen, X. Yang, Y. Bian, K. Nie, S. Liu, K. Tang, R. Zhang, Y. Zheng, & S. Gu, First-principles insights on the electronic and optical properties of ZnO@ CNT core@ shell nanostructure, Scientific reports, 8(1) (2018) 1-9.

DOI: 10.1038/s41598-018-33991-x

Google Scholar

[15] T. Lei, I. Pochorovski, & Z. Bao, Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method, Accounts of chemical research, 50(4) (2017) 1096-1104.

DOI: 10.1021/acs.accounts.7b00062

Google Scholar

[16] K. S. Troche, V. R. Coluci, R. Rurali, & D. S. Galvao, Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes, Journal of Physics: Condensed Matter, 19(23) (2007) 236222.

DOI: 10.1088/0953-8984/19/23/236222

Google Scholar

[17] M. D. Ganji, Calculations of Encapsulation of Amino Acids Inside the (13, 0) Single‐walled Carbon Nanotube, Fullerenes, nanotubes and carbon nanostructures, 18(1) (2010) 24-36.

DOI: 10.1080/15363830903293594

Google Scholar

[18] N. Saifuddin, A. Z. Raziah, & A. R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins, Journal of Chemistry, 2013 (2013).

DOI: 10.1155/2013/676815

Google Scholar

[19] Y. Zhou, Y. Fang, & R. P. Ramasamy, Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development, Sensors, 19(2) (2019) 392.

DOI: 10.3390/s19020392

Google Scholar

[20] A. Hirsch, & O. Vostrowsky, Functionalization of carbon nanotubes, Functional molecular nanostructures, (2005) 193-237.

DOI: 10.1007/b98169

Google Scholar

[21] H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, & T. Pichler, Functionalization of carbon nanotubes, Synthetic Metals, 141(1-2) (2004) 113-122.

DOI: 10.1016/j.synthmet.2003.08.018

Google Scholar

[22] F. V. Ferreira, W. Franceschi, B. R. C. Menezes, F. S. Brito, K. Lozano, A. R. Coutinho,... & G. P. Thim, Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites, Applied Surface Science, 410 (2017) 267-277.

DOI: 10.1016/j.apsusc.2017.03.098

Google Scholar

[23] L. Mahdavian, M. Monajjemi, & N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes and Carbon Nanostructures, 17(5) (2009) 484-495.

DOI: 10.1080/15363830903130044

Google Scholar

[24] R. González-Gómez, L. Cusinato, C. Bijani, Y. Coppel, P. Lecante, C. Amiens,... & R. Poteau, Carboxylic acid-capped ruthenium nanoparticles: experimental and theoretical case study with ethanoic acid, Nanoscale, 11(19) (2019) 9392-9409.

DOI: 10.1039/c9nr00391f

Google Scholar

[25] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,... & R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21(39) (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[26] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, & N. Marzari, Precision and efficiency in solid-state pseudopotential calculations, npj Computational Materials, 4(1) (2018) 1-13.

DOI: 10.1038/s41524-018-0127-2

Google Scholar

[27] I. K. Petrushenko, & K. B. Petrushenko, Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: A comparative DFT study, Vacuum, 167 (2019) 280-286.

DOI: 10.1016/j.vacuum.2019.06.021

Google Scholar

[28] F. Yutong, & S. Yu, CO2-adsorption promoted CH4-desorption onto low-rank coal vitrinite by density functional theory including dispersion correction (DFT-D3), Fuel, 219 (2018) 259-269.

DOI: 10.1016/j.fuel.2018.01.127

Google Scholar

[29] B. Kaewruksa, A. Du, & V. Ruangpornvisuti, Adsorption ability of pristine C24N24 nanocage promising as high hydrogen storage material: A DFT-D3 investigation, International Journal of Hydrogen Energy, 47(69) (2022) 29896-29906.

DOI: 10.1016/j.ijhydene.2022.06.286

Google Scholar

[30] A. A. G. Pido, A. A. Z. Munio, & L. C. C. Ambolode II, Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube, In Nano Hybrids and Composites, Trans Tech Publications Ltd, 38 (2023) 53-62.

DOI: 10.4028/p-3uk80a

Google Scholar

[31] M. Noei, A. A. Salari, M. Madani, M. Paeinshahri, & H. Anaraki-Ardakani, Adsorption properties of CH3COOH on (6, 0),(7, 0), and (8, 0) zigzag, and (4, 4), and (5, 5) armchair single-walled carbon nanotubes: A density functional study, Arabian Journal of Chemistry, 10 (2017) S3001-S3006.

DOI: 10.1016/j.arabjc.2013.11.039

Google Scholar

[32] Y. Zhang, Q. Zhang, & U. Schwingenschlogl, Spin-charge separation in finite length metallic carbon nanotubes, Nano Letters, 17(11) (2017) 6747-6751.

DOI: 10.1021/acs.nanolett.7b02880

Google Scholar

[33] H. Y. Liu, T. D. H. Nguyen, S. Y. Lin, H. C. Chung, W. B. Li, N. T. T. Tran,... & M. F. Lin, Essential electronic properties of armchair carbon and silicon nanotubes, First-Principles Calculations for Cathode, (2021) 12-1.

DOI: 10.1088/978-0-7503-4685-6ch12

Google Scholar

[34] V. Kaushik, S. Pathak, H. Sharma, S. Sachdev, S. Anwer, & C. Prakash, Impact of edge functionalization on electron field-emission characteristics of carbon nanotubes: A theoretical approach, Physica B: Condensed Matter, 625 (2022) 413491.

DOI: 10.1016/j.physb.2021.413491

Google Scholar

[35] F. Shojaie, A comprehensive density functional theory study on molecular structures of (5, 5) carbon nanotube doped with B, N, Al, Si, P, Co, and Ni, Computational and Theoretical Chemistry, 1114 (2017) 55-64.

DOI: 10.1016/j.comptc.2017.05.016

Google Scholar

[36] A. Benassi, A. Ferretti, & C. Cavazzoni, PWSCF.'s epsilon.x user's manual www. quantum-espresso. org. Doc/pp_user_guide. pdf Go to reference in article.

Google Scholar

[37] R. Jasti, & C. R. Bertozzi, Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality, Chemical physics letters, 494(1-3) (2010) 1-7.

DOI: 10.1016/j.cplett.2010.04.067

Google Scholar

[38] J. T. Titantah, K. Jorissen, & D. Lamoen, Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects, arXiv preprint cond-mat/0310325, (2003).

DOI: 10.1103/physrevb.69.125406

Google Scholar

[39] T. Movlarooy, A. Kompany, S. M. Hosseini, & N. Shahtahmasebi, Optical absorption and electron energy loss spectra of single-walled carbon nanotubes, Computational Materials Science, 49(3) (2010) 450-456.

DOI: 10.1016/j.commatsci.2010.05.035

Google Scholar

[40] J. Y. Yang, L. H. Liu, & J. Y. Tan, First-principles study on dielectric function of isolated and bundled carbon nanotubes, Journal of Quantitative Spectroscopy and Radiative Transfer, 158 (2015) 78-83.

DOI: 10.1016/j.jqsrt.2014.12.013

Google Scholar