[1]
A. Al-Jumaili, S. Alancherry, K. Bazaka, & M. V. Jacob, Review on the antimicrobial properties of carbon nanostructures, Materials, 10(9) (2017) 1066.
DOI: 10.3390/ma10091066
Google Scholar
[2]
O. Mykhailiv, H. Zubyk, & M. E. Plonska-Brzezinska, Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications, Inorganica Chimica Acta, 468 (2017) 49-66.
DOI: 10.1016/j.ica.2017.07.021
Google Scholar
[3]
S. Khanna, Carbon Nanotubes: Properties and Applications. In Carbon Nanotubes and Nanoparticles, Apple Academic Press, (2019) 195-216.
DOI: 10.1201/9780429463877-10
Google Scholar
[4]
A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, & A. K. Geim, The electronic properties of graphene, Reviews of modern physics, 81(1) (2009) 109.
DOI: 10.1103/revmodphys.81.109
Google Scholar
[5]
H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, & Y. Achiba, Optical properties of single-wall carbon nanotubes, Synthetic metals, 103(1-3) (1999) 2555-2558.
DOI: 10.1016/s0379-6779(98)00278-1
Google Scholar
[6]
S. H. Lim, H. I. Elim, X. Y. Gao, A. T. S. Wee, W. Ji, J. Y. Lee, & J. Lin, Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes, Physical Review B, 73(4) (2006) 045402.
DOI: 10.1103/physrevb.73.045402
Google Scholar
[7]
J. Jyoti, S. Basu, B. P. Singh, & S. R. Dhakate, Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites, Composites Part B: Engineering, 83 (2015)58-65.
DOI: 10.1016/j.compositesb.2015.08.055
Google Scholar
[8]
Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. Amer, & C. Zhou, Review of electronics based on single-walled carbon nanotubes, Single-Walled Carbon Nanotubes, (2019) 189-224.
DOI: 10.1007/978-3-030-12700-8_7
Google Scholar
[9]
W. Zhou, X. Bai, E. Wang, & S. Xie, Synthesis, structure, and properties of single‐walled carbon nanotubes, Advanced Materials, 21(45) (2009) 4565-4583.
DOI: 10.1002/adma.200901071
Google Scholar
[10]
D. Mitin, Y. Berdnikov, A. Vorobyev, A. Mozharov, S. Raudik, O. Koval,... & I. Mukhin, Optimization of optoelectronic properties of patterned single-walled carbon nanotube films, ACS Applied Materials & Interfaces, 12(49) (2020) 55141-55147.
DOI: 10.1021/acsami.0c14783
Google Scholar
[11]
Y. Feng, T. Inoue, H. An, R. Xiang, S. Chiashi, & S. Maruyama, Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes, Applied Physics Letters, 112(19) (2018) 191904.
DOI: 10.1063/1.5021696
Google Scholar
[12]
T. Qian, J. Li, & W. Feng, Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material, Energy Conversion and Management, 143 (2017) 96-108.
DOI: 10.1016/j.enconman.2017.03.065
Google Scholar
[13]
L. Piao, Q. Liu, & Y. Li, Interaction of amino acids and single-wall carbon nanotubes, The Journal of Physical Chemistry C, 116(2) (2012) 1724-1731.
DOI: 10.1021/jp2085318
Google Scholar
[14]
Y. Shen, X. Yang, Y. Bian, K. Nie, S. Liu, K. Tang, R. Zhang, Y. Zheng, & S. Gu, First-principles insights on the electronic and optical properties of ZnO@ CNT core@ shell nanostructure, Scientific reports, 8(1) (2018) 1-9.
DOI: 10.1038/s41598-018-33991-x
Google Scholar
[15]
T. Lei, I. Pochorovski, & Z. Bao, Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method, Accounts of chemical research, 50(4) (2017) 1096-1104.
DOI: 10.1021/acs.accounts.7b00062
Google Scholar
[16]
K. S. Troche, V. R. Coluci, R. Rurali, & D. S. Galvao, Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes, Journal of Physics: Condensed Matter, 19(23) (2007) 236222.
DOI: 10.1088/0953-8984/19/23/236222
Google Scholar
[17]
M. D. Ganji, Calculations of Encapsulation of Amino Acids Inside the (13, 0) Single‐walled Carbon Nanotube, Fullerenes, nanotubes and carbon nanostructures, 18(1) (2010) 24-36.
DOI: 10.1080/15363830903293594
Google Scholar
[18]
N. Saifuddin, A. Z. Raziah, & A. R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins, Journal of Chemistry, 2013 (2013).
DOI: 10.1155/2013/676815
Google Scholar
[19]
Y. Zhou, Y. Fang, & R. P. Ramasamy, Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development, Sensors, 19(2) (2019) 392.
DOI: 10.3390/s19020392
Google Scholar
[20]
A. Hirsch, & O. Vostrowsky, Functionalization of carbon nanotubes, Functional molecular nanostructures, (2005) 193-237.
DOI: 10.1007/b98169
Google Scholar
[21]
H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, & T. Pichler, Functionalization of carbon nanotubes, Synthetic Metals, 141(1-2) (2004) 113-122.
DOI: 10.1016/j.synthmet.2003.08.018
Google Scholar
[22]
F. V. Ferreira, W. Franceschi, B. R. C. Menezes, F. S. Brito, K. Lozano, A. R. Coutinho,... & G. P. Thim, Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites, Applied Surface Science, 410 (2017) 267-277.
DOI: 10.1016/j.apsusc.2017.03.098
Google Scholar
[23]
L. Mahdavian, M. Monajjemi, & N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes and Carbon Nanostructures, 17(5) (2009) 484-495.
DOI: 10.1080/15363830903130044
Google Scholar
[24]
R. González-Gómez, L. Cusinato, C. Bijani, Y. Coppel, P. Lecante, C. Amiens,... & R. Poteau, Carboxylic acid-capped ruthenium nanoparticles: experimental and theoretical case study with ethanoic acid, Nanoscale, 11(19) (2019) 9392-9409.
DOI: 10.1039/c9nr00391f
Google Scholar
[25]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,... & R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21(39) (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[26]
G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, & N. Marzari, Precision and efficiency in solid-state pseudopotential calculations, npj Computational Materials, 4(1) (2018) 1-13.
DOI: 10.1038/s41524-018-0127-2
Google Scholar
[27]
I. K. Petrushenko, & K. B. Petrushenko, Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: A comparative DFT study, Vacuum, 167 (2019) 280-286.
DOI: 10.1016/j.vacuum.2019.06.021
Google Scholar
[28]
F. Yutong, & S. Yu, CO2-adsorption promoted CH4-desorption onto low-rank coal vitrinite by density functional theory including dispersion correction (DFT-D3), Fuel, 219 (2018) 259-269.
DOI: 10.1016/j.fuel.2018.01.127
Google Scholar
[29]
B. Kaewruksa, A. Du, & V. Ruangpornvisuti, Adsorption ability of pristine C24N24 nanocage promising as high hydrogen storage material: A DFT-D3 investigation, International Journal of Hydrogen Energy, 47(69) (2022) 29896-29906.
DOI: 10.1016/j.ijhydene.2022.06.286
Google Scholar
[30]
A. A. G. Pido, A. A. Z. Munio, & L. C. C. Ambolode II, Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube, In Nano Hybrids and Composites, Trans Tech Publications Ltd, 38 (2023) 53-62.
DOI: 10.4028/p-3uk80a
Google Scholar
[31]
M. Noei, A. A. Salari, M. Madani, M. Paeinshahri, & H. Anaraki-Ardakani, Adsorption properties of CH3COOH on (6, 0),(7, 0), and (8, 0) zigzag, and (4, 4), and (5, 5) armchair single-walled carbon nanotubes: A density functional study, Arabian Journal of Chemistry, 10 (2017) S3001-S3006.
DOI: 10.1016/j.arabjc.2013.11.039
Google Scholar
[32]
Y. Zhang, Q. Zhang, & U. Schwingenschlogl, Spin-charge separation in finite length metallic carbon nanotubes, Nano Letters, 17(11) (2017) 6747-6751.
DOI: 10.1021/acs.nanolett.7b02880
Google Scholar
[33]
H. Y. Liu, T. D. H. Nguyen, S. Y. Lin, H. C. Chung, W. B. Li, N. T. T. Tran,... & M. F. Lin, Essential electronic properties of armchair carbon and silicon nanotubes, First-Principles Calculations for Cathode, (2021) 12-1.
DOI: 10.1088/978-0-7503-4685-6ch12
Google Scholar
[34]
V. Kaushik, S. Pathak, H. Sharma, S. Sachdev, S. Anwer, & C. Prakash, Impact of edge functionalization on electron field-emission characteristics of carbon nanotubes: A theoretical approach, Physica B: Condensed Matter, 625 (2022) 413491.
DOI: 10.1016/j.physb.2021.413491
Google Scholar
[35]
F. Shojaie, A comprehensive density functional theory study on molecular structures of (5, 5) carbon nanotube doped with B, N, Al, Si, P, Co, and Ni, Computational and Theoretical Chemistry, 1114 (2017) 55-64.
DOI: 10.1016/j.comptc.2017.05.016
Google Scholar
[36]
A. Benassi, A. Ferretti, & C. Cavazzoni, PWSCF.'s epsilon.x user's manual www. quantum-espresso. org. Doc/pp_user_guide. pdf Go to reference in article.
Google Scholar
[37]
R. Jasti, & C. R. Bertozzi, Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality, Chemical physics letters, 494(1-3) (2010) 1-7.
DOI: 10.1016/j.cplett.2010.04.067
Google Scholar
[38]
J. T. Titantah, K. Jorissen, & D. Lamoen, Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects, arXiv preprint cond-mat/0310325, (2003).
DOI: 10.1103/physrevb.69.125406
Google Scholar
[39]
T. Movlarooy, A. Kompany, S. M. Hosseini, & N. Shahtahmasebi, Optical absorption and electron energy loss spectra of single-walled carbon nanotubes, Computational Materials Science, 49(3) (2010) 450-456.
DOI: 10.1016/j.commatsci.2010.05.035
Google Scholar
[40]
J. Y. Yang, L. H. Liu, & J. Y. Tan, First-principles study on dielectric function of isolated and bundled carbon nanotubes, Journal of Quantitative Spectroscopy and Radiative Transfer, 158 (2015) 78-83.
DOI: 10.1016/j.jqsrt.2014.12.013
Google Scholar