[1]
H. Zhang, J. F. Banfield, the Chem. Rev., 114, 9613-9644 (2014).
Google Scholar
[2]
D. Hanaor, C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855-874 (2011).
DOI: 10.1007/s10853-010-5113-0
Google Scholar
[3]
M. Kakihana, M. Kobayashi, K. Tomita, V. Petrykin, Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes, Bull. Chem. Soc. Jpn., 83, 1285-1308 (2010).
DOI: 10.1246/bcsj.20100103
Google Scholar
[4]
N. M. Kinsinger, A. Wong, D. Li, F. Villalobos, D. Kisailus, Nucleation and Crystal Growth of Nanocrystalline Anatase and Rutile Phase TiO2 from a Water-Soluble Precursor, Cryst. Growth Des., 10, 5254-5261 (2010).
DOI: 10.1021/cg101105t
Google Scholar
[5]
M. Yoshizawa, M. Kobayashi, V. Petrykin, H. Kato, M. Kakihana, Insights into a selective synthesis of anatase, rutile, and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes, J. Mater. Res., 29, 90-97 (2014).
DOI: 10.1557/jmr.2013.229
Google Scholar
[6]
L. L. Lai, W. Wen, J. M. Wu, Room-Temperature Hydrolysis of Potassium Titanyl Oxalate and Water-Assisted Crystallization for TiO2 with High Photocatalytic Activity, ChemistrySelect, 2, 5025-5031 (2017).
DOI: 10.1002/slct.201700372
Google Scholar
[7]
R. Kuniya, K. Itatani, Preparation of millimeter-scale fibrous octacalcium phosphate particles by homogeneous precipitation method, Phosphorus Res. Bull., 32, 14-20 (2017).
DOI: 10.3363/prb.33.14
Google Scholar
[8]
R. Kuniya, T. Sumi, S. Horikoshi, T. Toyama, K. Itatani, Preparation of fibrous hydroxyapatite particles by homogeneous precipitation and microwave-assisted hydrothermal heating, Phosphorus Res. Bull., 34, 1-8 (2018).
DOI: 10.3363/prb.34.1
Google Scholar
[9]
A. Fester, W. Bensch, M. Trömel, Dipotassium Bis(oxalato)oxotitanate(IV) Dihydrate, Acta Cryst., 50, 852-854 (1994).
DOI: 10.1107/s0108270193006493
Google Scholar
[10]
N. Döbelin and R. Kleeberg, Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr. 48, 1573-1580 (2015).
DOI: 10.1107/s1600576715014685
Google Scholar
[11]
K. Muraleedharan and L. Pasha, Thermal decomposition of potassium titanium oxalate, J. Serb. Chem. Soc. 76, 1015-1026 (2011).
DOI: 10.2298/jsc100615083m
Google Scholar
[12]
C. Boudaren, T. Bataill, J. P. Auffrédic, D. Louër, Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(IV) oxalate [Ti2O3(H2O)2](C2O4)·H2O, Solid State Sci., 5, 175-182 (2003).
DOI: 10.1016/s1293-2558(02)00091-2
Google Scholar
[13]
J. Zhang, P. Sun, P. Jiang, Z. Guo, W. Liu, Q. Lu, W. Cao, The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6−h]4−h monomers, J. Mater. Chem. C., 7, 5764-5771 (2019).
DOI: 10.1039/c9tc00662a
Google Scholar
[14]
M. Kobayashi, M. Osada, H. Kato, M. Kakihana, Design of crystal structures, morphologies and functionalities of titanium oxide using water-soluble complexes and molecular control agents, Polym. J., 47, 78-83 (2015).
DOI: 10.1038/pj.2014.89
Google Scholar
[15]
Q. Wang, Z. Qiao, P. Jiang, J. Kuang, W. Liu, W. Cao, Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio, Solid State Sci., 77, 14-19 (2018).
DOI: 10.1016/j.solidstatesciences.2018.01.003
Google Scholar
[16]
K. Hu, L. E, D. Zhao, C. Hu, J. Cui, L. Lai, Q. Xiong, Z. Liu, Hydrothermal synthesis of a rutile/anatase TiO2 mixed crystal from potassium titanyl oxalate: crystal structure and formation mechanism, CrystEngComm, 20, 3364-3369 (2018).
DOI: 10.1039/c8ce00330k
Google Scholar