Anatase/Rutile Phase Control of Titanium Oxide Nanoparticles Synthesized from Potassium Titanium Oxalate by Homogeneous Precipitation and Hydrothermal Methods

Article Preview

Abstract:

Preparation conditions of titanium oxide (TiO2) powders were examined by the hydrolysis of titanium potassium oxalate (K2TiO(C2O4)2), through the homogeneous precipitation method (80oC for 24 h) and hydrothermal treatment (160 or 170oC for 1 h). According to the Rietveld analysis, almost a single phase of anatase TiO2 could be obtained by the hydrothermal treatment at 160oC for 1 h, followed by the heating at 900oC for 10 min in air. The molar ratio of anatase to rutile TiO2 was found to be controlled by optimizing the hydrothermal conditions in the solution and the heating conditions in air for the photocatalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhang, J. F. Banfield, the Chem. Rev., 114, 9613-9644 (2014).

Google Scholar

[2] D. Hanaor, C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855-874 (2011).

DOI: 10.1007/s10853-010-5113-0

Google Scholar

[3] M. Kakihana, M. Kobayashi, K. Tomita, V. Petrykin, Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes, Bull. Chem. Soc. Jpn., 83, 1285-1308 (2010).

DOI: 10.1246/bcsj.20100103

Google Scholar

[4] N. M. Kinsinger, A. Wong, D. Li, F. Villalobos, D. Kisailus, Nucleation and Crystal Growth of Nanocrystalline Anatase and Rutile Phase TiO2 from a Water-Soluble Precursor, Cryst. Growth Des., 10, 5254-5261 (2010).

DOI: 10.1021/cg101105t

Google Scholar

[5] M. Yoshizawa, M. Kobayashi, V. Petrykin, H. Kato, M. Kakihana, Insights into a selective synthesis of anatase, rutile, and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes, J. Mater. Res., 29, 90-97 (2014).

DOI: 10.1557/jmr.2013.229

Google Scholar

[6] L. L. Lai, W. Wen, J. M. Wu, Room-Temperature Hydrolysis of Potassium Titanyl Oxalate and Water-Assisted Crystallization for TiO2 with High Photocatalytic Activity, ChemistrySelect, 2, 5025-5031 (2017).

DOI: 10.1002/slct.201700372

Google Scholar

[7] R. Kuniya, K. Itatani, Preparation of millimeter-scale fibrous octacalcium phosphate particles by homogeneous precipitation method, Phosphorus Res. Bull., 32, 14-20 (2017).

DOI: 10.3363/prb.33.14

Google Scholar

[8] R. Kuniya, T. Sumi, S. Horikoshi, T. Toyama, K. Itatani, Preparation of fibrous hydroxyapatite particles by homogeneous precipitation and microwave-assisted hydrothermal heating, Phosphorus Res. Bull., 34, 1-8 (2018).

DOI: 10.3363/prb.34.1

Google Scholar

[9] A. Fester, W. Bensch, M. Trömel, Dipotassium Bis(oxalato)oxotitanate(IV) Dihydrate, Acta Cryst., 50, 852-854 (1994).

DOI: 10.1107/s0108270193006493

Google Scholar

[10] N. Döbelin and R. Kleeberg, Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr. 48, 1573-1580 (2015).

DOI: 10.1107/s1600576715014685

Google Scholar

[11] K. Muraleedharan and L. Pasha, Thermal decomposition of potassium titanium oxalate, J. Serb. Chem. Soc. 76, 1015-1026 (2011).

DOI: 10.2298/jsc100615083m

Google Scholar

[12] C. Boudaren, T. Bataill, J. P. Auffrédic, D. Louër, Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(IV) oxalate [Ti2O3(H2O)2](C2O4)·H2O, Solid State Sci., 5, 175-182 (2003).

DOI: 10.1016/s1293-2558(02)00091-2

Google Scholar

[13] J. Zhang, P. Sun, P. Jiang, Z. Guo, W. Liu, Q. Lu, W. Cao, The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6−h]4−h monomers, J. Mater. Chem. C., 7, 5764-5771 (2019).

DOI: 10.1039/c9tc00662a

Google Scholar

[14] M. Kobayashi, M. Osada, H. Kato, M. Kakihana, Design of crystal structures, morphologies and functionalities of titanium oxide using water-soluble complexes and molecular control agents, Polym. J., 47, 78-83 (2015).

DOI: 10.1038/pj.2014.89

Google Scholar

[15] Q. Wang, Z. Qiao, P. Jiang, J. Kuang, W. Liu, W. Cao, Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio, Solid State Sci., 77, 14-19 (2018).

DOI: 10.1016/j.solidstatesciences.2018.01.003

Google Scholar

[16] K. Hu, L. E, D. Zhao, C. Hu, J. Cui, L. Lai, Q. Xiong, Z. Liu, Hydrothermal synthesis of a rutile/anatase TiO2 mixed crystal from potassium titanyl oxalate: crystal structure and formation mechanism, CrystEngComm, 20, 3364-3369 (2018).

DOI: 10.1039/c8ce00330k

Google Scholar