First-Principles Insights on the Bonding Mechanism and Electronic Structure of SWCNT and Oxygenated-SWCNT Functionalized by Cellulose Biopolymer

Article Preview

Abstract:

Here, we report the bonding mechanism and electronic structure of single-walled carbon nanotube and oxygenated single-walled carbon nanotube functionalized by cellulose chain using first-principles density functional theory. Analysis of the optimized molecular configuration and charge redistribution of the nanohybrid indicates that the cellulose chain binds with the prototype single-walled carbon nanotube and oxygenated single-walled carbon nanotube via physisorption. The cellulose chain adsorption on the single-walled carbon nanotube preserved its electronic structure. On the other hand, the electronic structure of the oxygenated single-walled carbon nanotube and cellulose complex reveals that the electronic states of the cellulose tend to populate in the forbidden gap, thus, lowering the bandgap of the overall complex. The electronic structure of the complex can be considered as the superposition of its constituents in which no significant hybridization of the orbital characters is observable. The findings confirm that cellulose is indeed suitable for the non-covalent functionalization of single-walled carbon nanotubes and provide new insights into the electronic structure of the oxygenated single-walled carbon nanotube/cellulose complex.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-63

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ali, A. Andriyana, Properties of Multifunctional Composite Materials Based on Nanomaterials: A Review, RSC Advances. 10 (2020) 16390–16403

DOI: 10.1039/c9ra10594h

Google Scholar

[2] D. Miyashiro, R. Hamano, K. Umemura, A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes, Nanomaterials. 10 (2020)186

DOI: 10.3390/nano10020186

Google Scholar

[3] R. Khare, S. Bose, Carbon Nanotube Based Composites A Review. Journal of Minerals and Materials Characterization and Engineering. 04 (2005)

Google Scholar

[4] L. Deng, R.J. Young, I.A. Kinloch, R. Sun, G. Zhang, L. Noé, M. Monthioux, Coefficient of Thermal Expansion of Carbon Nanotubes Measured by Raman Spectroscopy, Appl. Phys. Lett. 104 (2014)

DOI: 10.1063/1.4864056

Google Scholar

[5] E. Tetik, F. Karadag, M. Karaaslan, İ. Çömez, The Electronic Properties of the Graphene and Carbon Nanotubes: Ab Initio Density Functional Theory Investigation, ISRN Nanotechnology.(2012)

DOI: 10.5402/2012/416417

Google Scholar

[6] P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. 87 (2001) 215502

DOI: 10.1103/physrevlett.87.215502

Google Scholar

[7] K. Hirayama, M. Kitamura, R. Hamano, K. Umemura, Stable Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Dispersed Using a Coconut-Based Natural Detergent, ACS Omega. (2021)

DOI: 10.1021/acsomega.1c04615

Google Scholar

[8] B. Chen, M. Gao, J.M. Zuo, S. Qu, B. Liu, Y. Huang, Binding Energy of Parallel Carbon Nanotubes, Applied Physics Letters. 83 (2003) 3570–3571

DOI: 10.1063/1.1623013

Google Scholar

[9] S. Mallakpour, S. Soltanian, Surface Functionalization of Carbon Nanotubes: Fabrication and Applications, RSC Adv. 6 (2016) 109916-109935

DOI: 10.1039/c6ra24522f

Google Scholar

[10] T. Fujigaya, N. Nakashima, Non-Covalent Polymer Wrapping of Carbon Nanotubes and the Role of Wrapped Polymers as Functional Dispersants, Sci. Technol. Adv. Mater. 16 (2015)

DOI: 10.1088/1468-6996/16/2/024802

Google Scholar

[11] A. Iqbal, A. Saeed, A. Ul-Hamid, A Review Featuring the Fundamentals and Advancements of Polymer/CNT Nanocomposite Application in Aerospace Industry, Polym. Bull. 78 (2021) 539-557

DOI: 10.1007/s00289-019-03096-0

Google Scholar

[12] A. Kausar, I. Rafique, B. Muhammad, Review of Applications of Polymer/Carbon Nanotubes and Epoxy/CNT Composites, Polymer-Plastics Technology and Engineering. 55 (2016) 1167–1191

DOI: 10.1080/03602559.2016.1163588

Google Scholar

[13] K. Umemura, R. Hamano, H. Komatsu, T. Ikuno, E. Siswoyo, Dispersion of Carbon Nanotubes with "Green" Detergents, Molecules 26 (2021) 2908

DOI: 10.3390/molecules26102908

Google Scholar

[14] S. Mallakpour, E. Azadi, C.M. Hussain, Chitosan/Carbon Nanotube Hybrids: Recent Progress and Achievements for Industrial Applications, New J. Chem. 45 (2021) 3756-3777

DOI: 10.1039/d0nj06035f

Google Scholar

[15] I. Riou, P. Bertoncini, H. Bizot, J.Y. Mevellec, A. Buléon, O. Chauvet, Carboxymethylcellulose/Single Walled Carbon Nanotube Complexes, J Nanosci Nanotechnol 9 (2009) 6176–6180

DOI: 10.1166/jnn.2009.1573

Google Scholar

[16] A. Hajian, S. Lindström, T. Pettersson, M. Hamedi, L. Wågberg, Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials, Nano Letters 17 (2017)

DOI: 10.1021/acs.nanolett.6b04405

Google Scholar

[17] D. Lasrado, S. Ahankari, K. Kar, Nanocellulose‐based Polymer Composites for Energy Applications—A Review, Journal of Applied Polymer Science. 137 (2020) 48959

DOI: 10.1002/app.48959

Google Scholar

[18] Z. Shi, G. Phillips, G. Yang, Nanocellulose Electroconductive Composites. Nanoscale. 5 (2013)

Google Scholar

[19] Z. Wan, C. Chen, T. Meng, M. Mojtaba, Y. Teng, Q. Feng, D. Li, Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes, ACS Appl. Mater. Interfaces. 11 (2019) 42808–42817

DOI: 10.1021/acsami.9b15153

Google Scholar

[20] W. Luo, J. Hayden, S.H. Jang, Y. Wang, Y. Zhang, Y. Kuang, Y. Wang, Y. Zhou, G.W. Rubloff, C.F. Lin, et. al, Highly Conductive, Light Weight, Robust, Corrosion-Resistant, Scalable, All Fiber Based Current Collectors for Aqueous Acidic Batteries, Advanced Energy Materials. 8 (2018) 1702615

DOI: 10.1002/aenm.201702615

Google Scholar

[21] H. Qi, B. Schulz, T. Vad, J. Liu, E. Mader, G. Seide, T. Gries, Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials, ACS applied materials & interfaces. 7 (2015)

DOI: 10.1021/acsami.5b06229

Google Scholar

[22] H.D. Huang, C.Y. Liu, L.Q. Zhang, G.J. Zhong, Z.M. Li, Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding, ACS Sustainable Chem. Eng. 3 (2015) 317–324

DOI: 10.1021/sc500681v

Google Scholar

[23] A. Brakat, H. Zhu, Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform, Nano-Micro Lett. 13 (2021) 94

DOI: 10.1007/s40820-021-00627-1

Google Scholar

[24] Y. Li, H. Zhu, S. Zhu, J. Wan, Z. Liu, O. Vaaland, S. Lacey, Z. Fang, H. Dai, T. Li, et al., Hybridizing Wood Cellulose and Graphene Oxide toward High-Performance Fibers, NPG Asia Materials. 7 (2015)

DOI: 10.1038/am.2014.111

Google Scholar

[25] R. Ansari, S. Ajori, S. Rouhi, Structural and Elastic Properties and Stability Characteristics of Oxygenated Carbon Nanotubes under Physical Adsorption of Polymers, Applied Surface Science 332 (2015) 640–647

DOI: 10.1016/j.apsusc.2015.01.190

Google Scholar

[26] R. Majidi, H.R. Taghiyari, Electronic Properties Of Graphene Oxide In The Presence Of Cellulose Chains: A Density Functional Theory Approach, Cellulose Chemistry and Technology. 53 (2019) 411–416

DOI: 10.35812/cellulosechemtechnol.2019.53.41

Google Scholar

[27] M. Kwiatkowska, R. Pełech, A. Jędrzejewska, D. Moszyński, I. Pełech, Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites, Polymers. 12 (2020) 308

DOI: 10.3390/polym12020308

Google Scholar

[28] B. Ye, S.I. Kim, M. Lee, M. Ezazi, H.D. Kim, G. Kwon, D.H. Lee, Synthesis of Oxygen Functionalized Carbon Nanotubes and Their Application for Selective Catalytic Reduction of NO with NH3, RSC Adv. 10 (2020) 16700–16708

DOI: 10.1039/d0ra01665a

Google Scholar

[29] M.D. Ganji, A. Bakhshandeh, Functionalized Single-Walled Carbon Nanotubes Interacting with Glycine Amino Acid: DFT Study, Physica B: Condensed Matter. 406 (2011) 4453–4459

DOI: 10.1016/j.physb.2011.09.006

Google Scholar

[30] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136 (1968) B864–B871

DOI: 10.1103/physrev.136.b864

Google Scholar

[31] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[32] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., QUANTUM ESPRESSO: A Modular and Open Source Software Project for Quantum Simulations of Materials, J Phys Condens Matter. 21 (2009) 395502

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[33] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, et al., Quantum ESPRESSO toward the Exascale, J.Chem. Phys. 152 (2020) 154105

DOI: 10.1063/5.0005082

Google Scholar

[34] K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Pseudopotentials for High-Throughput DFT Calculations, Computational Materials Science. 81 (2014) 446–452

DOI: 10.1016/j.commatsci.2013.08.053

Google Scholar

[35] Y. Shen, X. Yang, Y. Bian, K. Nie, S. Liu, K. Tang, R. Zhang,Y. Zheng, S. Gu, First Principles Insights on the Electronic and Optical Properties of ZnO@CNT Core@shell Nanostructure, Sci Rep. 8 (2018) 15464

DOI: 10.1038/s41598-018-33991-x

Google Scholar

[36] A.A. Munio, D. Domato, A.A. Pido, L.C. Ambolode II, Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study, Biointerface Research in Applied Chemistry 13 (2023)

Google Scholar

[37] J. Jelil, A. Abdurahman, O. Gülseren, U. Schwingenschlogl, Non-Covalent Functionalization of Single Wall Carbon Nanotubes and Graphene by a Conjugated Polymer, Applied Physics Letters. 105 (2014) 013103–013103

DOI: 10.1063/1.4886968

Google Scholar

[38] M. Shishehbor, M.R. Pouranian, Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study, Nanomaterials. 10 (2020) 154

DOI: 10.3390/nano10010154

Google Scholar

[39] G. Henkelman, A. Arnaldsson, H. Jónsson, A Fast and Robust Algorithm for Bader Decomposition of Charge Density, Computational Materials Science. 36 (2006) 354–360

DOI: 10.1016/j.commatsci.2005.04.010

Google Scholar

[40] M. Simeoni, C. De Luca, S. Picozzi, S. Santucci, B. Delley, Interaction between Zigzag Single-Wall Carbon Nanotubes and Polymers: A Density-Functional Study, J. Chem. Phys. 122 (2005) 214710

DOI: 10.1063/1.1925272

Google Scholar

[41] C. Roquelet, B. Langlois, F. Vialla, D. Garrot, J.S. Lauret, C. Voisin, Light Harvesting with Non Covalent Carbon Nanotube/Porphyrin Compounds, Chemical Physics. 413 (2013) 45–54

DOI: 10.1016/j.chemphys.2012.09.004

Google Scholar

[42] J.J. Dannenberg, An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press,  New York and Oxford, (1997)

DOI: 10.1021/ja9756331

Google Scholar

[43] G. Desiraju, T. Steiner, The Weak Hydrogen Bond: In Structural Chemistry and Biology, International Union of Crystallography Monographs on Crystallography, Oxford University Press: Oxford, (2001)

DOI: 10.1021/ja0047368

Google Scholar

[44] T. Uto, T. Miyata, T. Yui, Prediction of Cellulose Nanotube Models through Density Functional Theory Calculations, Cellulose. 21 (2014) 87–95

DOI: 10.1007/s10570-013-0125-y

Google Scholar

[45] T. Uto, Y. Kodama, T. Miyata, T. Yui, Molecular Dynamics Simulations of Theoretical Cellulose Nanotube Models, Carbohydrate Polymers. 190 (2018) 331–338

DOI: 10.1016/j.carbpol.2018.03.004

Google Scholar

[46] B. Zhu, K. Wang, W. Sun, Z. Fu, H. Ahmad, M. Fan, H. Gao, Revealing the Adsorption Energy and Interface Characteristic of Cellulose-Graphene Oxide Composites by First-Principles Calculations, Composites Science and Technology. 218 (2022) 109209

DOI: 10.1016/j.compscitech.2021.109209

Google Scholar

[47] B. Chilukuri, U. Mazur, K.W. Hipps, Effect of Dispersion on Surface Interactions of Cobalt(II) Octaethylporphyrin Monolayer on Au(111) and HOPG(0001) Substrates: A Comparative First Principles Study, Phys. Chem. Chem. Phys. 16 (2014) 14096–14107

DOI: 10.1039/c4cp01762e

Google Scholar

[48] A.D. Becke, K.E. Edgecombe, A Simple Measure of Electron Localization in Atomic and Molecular Systems, J. Chem. Phys. 92 (1990) 5397–5403

DOI: 10.1063/1.458517

Google Scholar

[49] K. Koumpouras, J.A. Larsson, Distinguishing between Chemical Bonding and Physical Binding Using Electron Localization Function (ELF). J. Phys.: Condens. Matter 32 (2020) 315502

DOI: 10.1088/1361-648x/ab7fd8

Google Scholar

[50] S. Dag, Oxygenation of Carbon Nanotubes: Atomic Structure, Energetics, and Electronic Structure. Phys. Rev. B. 67 (2006)

Google Scholar

[51] J.M.H. Kroes, F. Pietrucci, A. Curioni, R. Jaafar, O. Gröning, W. Andreoni, Atomic Oxygen Chemisorption on Carbon Nanotubes Revisited with Theory and Experiment, J. Phys. Chem. C. 117 (2013) 1948–(1954)

DOI: 10.1021/jp310332y

Google Scholar

[52] D. Barker, A. Fors, E. Lindgren, A. Olesund, E. Schröder, Filter Function of Graphene Oxide: Trapping Perfluorinated Molecules, J. Chem. Phys. 152 (2020) 024704

DOI: 10.1063/1.5132751

Google Scholar

[53] A. Kleiner, S. Eggert, Band Gaps of Primary Metallic Carbon Nanotubes. Phys. Rev. B. 63 (2001) 073408

DOI: 10.1103/physrevb.63.073408

Google Scholar

[54] D. Srivastava, M.S. Kuklin, J. Ahopelto, A.J. Karttunen, Electronic Band Structures of Pristine and Chemically Modified Cellulose Allomorphs, Carbohydrate Polymers 243 (2020) 116440

DOI: 10.1016/j.carbpol.2020.116440

Google Scholar

[55] G. Toraman, E. Sert, H. Gulasik, D. Toffoli, H. Ustunel, E. Gurses, Polymer Interfaces with Carbon Nanostructures: First Principles Density Functional Theory and Molecular Dynamics Study of Polyetheretherketone Adsorption on Graphene and Nanotubes, Computational Materials Science. 191 (2021) 110320

DOI: 10.1016/j.commatsci.2021.110320

Google Scholar