[1]
A. Ali, A. Andriyana, Properties of Multifunctional Composite Materials Based on Nanomaterials: A Review, RSC Advances. 10 (2020) 16390–16403
DOI: 10.1039/c9ra10594h
Google Scholar
[2]
D. Miyashiro, R. Hamano, K. Umemura, A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes, Nanomaterials. 10 (2020)186
DOI: 10.3390/nano10020186
Google Scholar
[3]
R. Khare, S. Bose, Carbon Nanotube Based Composites A Review. Journal of Minerals and Materials Characterization and Engineering. 04 (2005)
Google Scholar
[4]
L. Deng, R.J. Young, I.A. Kinloch, R. Sun, G. Zhang, L. Noé, M. Monthioux, Coefficient of Thermal Expansion of Carbon Nanotubes Measured by Raman Spectroscopy, Appl. Phys. Lett. 104 (2014)
DOI: 10.1063/1.4864056
Google Scholar
[5]
E. Tetik, F. Karadag, M. Karaaslan, İ. Çömez, The Electronic Properties of the Graphene and Carbon Nanotubes: Ab Initio Density Functional Theory Investigation, ISRN Nanotechnology.(2012)
DOI: 10.5402/2012/416417
Google Scholar
[6]
P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. 87 (2001) 215502
DOI: 10.1103/physrevlett.87.215502
Google Scholar
[7]
K. Hirayama, M. Kitamura, R. Hamano, K. Umemura, Stable Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Dispersed Using a Coconut-Based Natural Detergent, ACS Omega. (2021)
DOI: 10.1021/acsomega.1c04615
Google Scholar
[8]
B. Chen, M. Gao, J.M. Zuo, S. Qu, B. Liu, Y. Huang, Binding Energy of Parallel Carbon Nanotubes, Applied Physics Letters. 83 (2003) 3570–3571
DOI: 10.1063/1.1623013
Google Scholar
[9]
S. Mallakpour, S. Soltanian, Surface Functionalization of Carbon Nanotubes: Fabrication and Applications, RSC Adv. 6 (2016) 109916-109935
DOI: 10.1039/c6ra24522f
Google Scholar
[10]
T. Fujigaya, N. Nakashima, Non-Covalent Polymer Wrapping of Carbon Nanotubes and the Role of Wrapped Polymers as Functional Dispersants, Sci. Technol. Adv. Mater. 16 (2015)
DOI: 10.1088/1468-6996/16/2/024802
Google Scholar
[11]
A. Iqbal, A. Saeed, A. Ul-Hamid, A Review Featuring the Fundamentals and Advancements of Polymer/CNT Nanocomposite Application in Aerospace Industry, Polym. Bull. 78 (2021) 539-557
DOI: 10.1007/s00289-019-03096-0
Google Scholar
[12]
A. Kausar, I. Rafique, B. Muhammad, Review of Applications of Polymer/Carbon Nanotubes and Epoxy/CNT Composites, Polymer-Plastics Technology and Engineering. 55 (2016) 1167–1191
DOI: 10.1080/03602559.2016.1163588
Google Scholar
[13]
K. Umemura, R. Hamano, H. Komatsu, T. Ikuno, E. Siswoyo, Dispersion of Carbon Nanotubes with "Green" Detergents, Molecules 26 (2021) 2908
DOI: 10.3390/molecules26102908
Google Scholar
[14]
S. Mallakpour, E. Azadi, C.M. Hussain, Chitosan/Carbon Nanotube Hybrids: Recent Progress and Achievements for Industrial Applications, New J. Chem. 45 (2021) 3756-3777
DOI: 10.1039/d0nj06035f
Google Scholar
[15]
I. Riou, P. Bertoncini, H. Bizot, J.Y. Mevellec, A. Buléon, O. Chauvet, Carboxymethylcellulose/Single Walled Carbon Nanotube Complexes, J Nanosci Nanotechnol 9 (2009) 6176–6180
DOI: 10.1166/jnn.2009.1573
Google Scholar
[16]
A. Hajian, S. Lindström, T. Pettersson, M. Hamedi, L. Wågberg, Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials, Nano Letters 17 (2017)
DOI: 10.1021/acs.nanolett.6b04405
Google Scholar
[17]
D. Lasrado, S. Ahankari, K. Kar, Nanocellulose‐based Polymer Composites for Energy Applications—A Review, Journal of Applied Polymer Science. 137 (2020) 48959
DOI: 10.1002/app.48959
Google Scholar
[18]
Z. Shi, G. Phillips, G. Yang, Nanocellulose Electroconductive Composites. Nanoscale. 5 (2013)
Google Scholar
[19]
Z. Wan, C. Chen, T. Meng, M. Mojtaba, Y. Teng, Q. Feng, D. Li, Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes, ACS Appl. Mater. Interfaces. 11 (2019) 42808–42817
DOI: 10.1021/acsami.9b15153
Google Scholar
[20]
W. Luo, J. Hayden, S.H. Jang, Y. Wang, Y. Zhang, Y. Kuang, Y. Wang, Y. Zhou, G.W. Rubloff, C.F. Lin, et. al, Highly Conductive, Light Weight, Robust, Corrosion-Resistant, Scalable, All Fiber Based Current Collectors for Aqueous Acidic Batteries, Advanced Energy Materials. 8 (2018) 1702615
DOI: 10.1002/aenm.201702615
Google Scholar
[21]
H. Qi, B. Schulz, T. Vad, J. Liu, E. Mader, G. Seide, T. Gries, Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials, ACS applied materials & interfaces. 7 (2015)
DOI: 10.1021/acsami.5b06229
Google Scholar
[22]
H.D. Huang, C.Y. Liu, L.Q. Zhang, G.J. Zhong, Z.M. Li, Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding, ACS Sustainable Chem. Eng. 3 (2015) 317–324
DOI: 10.1021/sc500681v
Google Scholar
[23]
A. Brakat, H. Zhu, Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform, Nano-Micro Lett. 13 (2021) 94
DOI: 10.1007/s40820-021-00627-1
Google Scholar
[24]
Y. Li, H. Zhu, S. Zhu, J. Wan, Z. Liu, O. Vaaland, S. Lacey, Z. Fang, H. Dai, T. Li, et al., Hybridizing Wood Cellulose and Graphene Oxide toward High-Performance Fibers, NPG Asia Materials. 7 (2015)
DOI: 10.1038/am.2014.111
Google Scholar
[25]
R. Ansari, S. Ajori, S. Rouhi, Structural and Elastic Properties and Stability Characteristics of Oxygenated Carbon Nanotubes under Physical Adsorption of Polymers, Applied Surface Science 332 (2015) 640–647
DOI: 10.1016/j.apsusc.2015.01.190
Google Scholar
[26]
R. Majidi, H.R. Taghiyari, Electronic Properties Of Graphene Oxide In The Presence Of Cellulose Chains: A Density Functional Theory Approach, Cellulose Chemistry and Technology. 53 (2019) 411–416
DOI: 10.35812/cellulosechemtechnol.2019.53.41
Google Scholar
[27]
M. Kwiatkowska, R. Pełech, A. Jędrzejewska, D. Moszyński, I. Pełech, Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites, Polymers. 12 (2020) 308
DOI: 10.3390/polym12020308
Google Scholar
[28]
B. Ye, S.I. Kim, M. Lee, M. Ezazi, H.D. Kim, G. Kwon, D.H. Lee, Synthesis of Oxygen Functionalized Carbon Nanotubes and Their Application for Selective Catalytic Reduction of NO with NH3, RSC Adv. 10 (2020) 16700–16708
DOI: 10.1039/d0ra01665a
Google Scholar
[29]
M.D. Ganji, A. Bakhshandeh, Functionalized Single-Walled Carbon Nanotubes Interacting with Glycine Amino Acid: DFT Study, Physica B: Condensed Matter. 406 (2011) 4453–4459
DOI: 10.1016/j.physb.2011.09.006
Google Scholar
[30]
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136 (1968) B864–B871
DOI: 10.1103/physrev.136.b864
Google Scholar
[31]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[32]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., QUANTUM ESPRESSO: A Modular and Open Source Software Project for Quantum Simulations of Materials, J Phys Condens Matter. 21 (2009) 395502
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[33]
P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, et al., Quantum ESPRESSO toward the Exascale, J.Chem. Phys. 152 (2020) 154105
DOI: 10.1063/5.0005082
Google Scholar
[34]
K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Pseudopotentials for High-Throughput DFT Calculations, Computational Materials Science. 81 (2014) 446–452
DOI: 10.1016/j.commatsci.2013.08.053
Google Scholar
[35]
Y. Shen, X. Yang, Y. Bian, K. Nie, S. Liu, K. Tang, R. Zhang,Y. Zheng, S. Gu, First Principles Insights on the Electronic and Optical Properties of ZnO@CNT Core@shell Nanostructure, Sci Rep. 8 (2018) 15464
DOI: 10.1038/s41598-018-33991-x
Google Scholar
[36]
A.A. Munio, D. Domato, A.A. Pido, L.C. Ambolode II, Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study, Biointerface Research in Applied Chemistry 13 (2023)
Google Scholar
[37]
J. Jelil, A. Abdurahman, O. Gülseren, U. Schwingenschlogl, Non-Covalent Functionalization of Single Wall Carbon Nanotubes and Graphene by a Conjugated Polymer, Applied Physics Letters. 105 (2014) 013103–013103
DOI: 10.1063/1.4886968
Google Scholar
[38]
M. Shishehbor, M.R. Pouranian, Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study, Nanomaterials. 10 (2020) 154
DOI: 10.3390/nano10010154
Google Scholar
[39]
G. Henkelman, A. Arnaldsson, H. Jónsson, A Fast and Robust Algorithm for Bader Decomposition of Charge Density, Computational Materials Science. 36 (2006) 354–360
DOI: 10.1016/j.commatsci.2005.04.010
Google Scholar
[40]
M. Simeoni, C. De Luca, S. Picozzi, S. Santucci, B. Delley, Interaction between Zigzag Single-Wall Carbon Nanotubes and Polymers: A Density-Functional Study, J. Chem. Phys. 122 (2005) 214710
DOI: 10.1063/1.1925272
Google Scholar
[41]
C. Roquelet, B. Langlois, F. Vialla, D. Garrot, J.S. Lauret, C. Voisin, Light Harvesting with Non Covalent Carbon Nanotube/Porphyrin Compounds, Chemical Physics. 413 (2013) 45–54
DOI: 10.1016/j.chemphys.2012.09.004
Google Scholar
[42]
J.J. Dannenberg, An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press, New York and Oxford, (1997)
DOI: 10.1021/ja9756331
Google Scholar
[43]
G. Desiraju, T. Steiner, The Weak Hydrogen Bond: In Structural Chemistry and Biology, International Union of Crystallography Monographs on Crystallography, Oxford University Press: Oxford, (2001)
DOI: 10.1021/ja0047368
Google Scholar
[44]
T. Uto, T. Miyata, T. Yui, Prediction of Cellulose Nanotube Models through Density Functional Theory Calculations, Cellulose. 21 (2014) 87–95
DOI: 10.1007/s10570-013-0125-y
Google Scholar
[45]
T. Uto, Y. Kodama, T. Miyata, T. Yui, Molecular Dynamics Simulations of Theoretical Cellulose Nanotube Models, Carbohydrate Polymers. 190 (2018) 331–338
DOI: 10.1016/j.carbpol.2018.03.004
Google Scholar
[46]
B. Zhu, K. Wang, W. Sun, Z. Fu, H. Ahmad, M. Fan, H. Gao, Revealing the Adsorption Energy and Interface Characteristic of Cellulose-Graphene Oxide Composites by First-Principles Calculations, Composites Science and Technology. 218 (2022) 109209
DOI: 10.1016/j.compscitech.2021.109209
Google Scholar
[47]
B. Chilukuri, U. Mazur, K.W. Hipps, Effect of Dispersion on Surface Interactions of Cobalt(II) Octaethylporphyrin Monolayer on Au(111) and HOPG(0001) Substrates: A Comparative First Principles Study, Phys. Chem. Chem. Phys. 16 (2014) 14096–14107
DOI: 10.1039/c4cp01762e
Google Scholar
[48]
A.D. Becke, K.E. Edgecombe, A Simple Measure of Electron Localization in Atomic and Molecular Systems, J. Chem. Phys. 92 (1990) 5397–5403
DOI: 10.1063/1.458517
Google Scholar
[49]
K. Koumpouras, J.A. Larsson, Distinguishing between Chemical Bonding and Physical Binding Using Electron Localization Function (ELF). J. Phys.: Condens. Matter 32 (2020) 315502
DOI: 10.1088/1361-648x/ab7fd8
Google Scholar
[50]
S. Dag, Oxygenation of Carbon Nanotubes: Atomic Structure, Energetics, and Electronic Structure. Phys. Rev. B. 67 (2006)
Google Scholar
[51]
J.M.H. Kroes, F. Pietrucci, A. Curioni, R. Jaafar, O. Gröning, W. Andreoni, Atomic Oxygen Chemisorption on Carbon Nanotubes Revisited with Theory and Experiment, J. Phys. Chem. C. 117 (2013) 1948–(1954)
DOI: 10.1021/jp310332y
Google Scholar
[52]
D. Barker, A. Fors, E. Lindgren, A. Olesund, E. Schröder, Filter Function of Graphene Oxide: Trapping Perfluorinated Molecules, J. Chem. Phys. 152 (2020) 024704
DOI: 10.1063/1.5132751
Google Scholar
[53]
A. Kleiner, S. Eggert, Band Gaps of Primary Metallic Carbon Nanotubes. Phys. Rev. B. 63 (2001) 073408
DOI: 10.1103/physrevb.63.073408
Google Scholar
[54]
D. Srivastava, M.S. Kuklin, J. Ahopelto, A.J. Karttunen, Electronic Band Structures of Pristine and Chemically Modified Cellulose Allomorphs, Carbohydrate Polymers 243 (2020) 116440
DOI: 10.1016/j.carbpol.2020.116440
Google Scholar
[55]
G. Toraman, E. Sert, H. Gulasik, D. Toffoli, H. Ustunel, E. Gurses, Polymer Interfaces with Carbon Nanostructures: First Principles Density Functional Theory and Molecular Dynamics Study of Polyetheretherketone Adsorption on Graphene and Nanotubes, Computational Materials Science. 191 (2021) 110320
DOI: 10.1016/j.commatsci.2021.110320
Google Scholar