[1]
G. Boopathi, S. Pugalendhi, S. Selvasekarapandian, M. Premalatha, S. Monisha, and G. Aristatil, Development of proton conducting biopolymer membrane based on agar–agar for fuel cell, Ionics. 23 (2017) 2781–2790.
DOI: 10.1007/s11581-016-1876-x
Google Scholar
[2]
E. Gajanand, L. K. Soni, and V. K. Dixit, Biodegradable Polymers : a Smart Strategy for Today'S Crucial Needs, Biomaterials. 3 (2014) 2319-1082.
Google Scholar
[3]
R. Velu, T. Calais, A. Jayakumar, and F. Raspall, A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique, Materials (Basel). 13 (2020) 92.
DOI: 10.3390/ma13010092
Google Scholar
[4]
M. Baloch and J. Labidi, Lignin biopolymer: The material of choice for advanced lithium-based batteries, RSC Adv. 11 (2021) 23644–23653.
DOI: 10.1039/d1ra02611a
Google Scholar
[5]
E. Lizundia and D. Kundu, Advances in Natural Biopolymer-Based Electrolytes and Separators for Battery Applications, Adv. Funct. Mater. 31 (2021) 1–29.
DOI: 10.1002/adfm.202005646
Google Scholar
[6]
M. Darder, P. Aranda, and E. Ruiz-Hitzky, Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials, Adv. Mater. 19 (2007) 1309–1319.
DOI: 10.1002/adma.200602328
Google Scholar
[7]
M. E. Hassan, J. Bai, and D. Q. Dou, Biopolymers; Definition, classification and applications, Egypt. J. Chem. 62 (2019) 1725–1737.
Google Scholar
[8]
S. Shanmuga Priya, M. Karthika, S. Selvasekarapandian, and R. Manjuladevi, Preparation and characterization of polymer electrolyte based on biopolymer I-Carrageenan with magnesium nitrate, Solid State Ionics. 327 (2018) 136–149.
DOI: 10.1016/j.ssi.2018.10.031
Google Scholar
[9]
M. F. Bósquez-Cáceres, S. Hidalgo-Bonilla, V. M. Córdova, R. M. Michell, and J. P. Tafur, Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries : From Synthetic to Biopolymers, Polymers (Basel). 13 (2021) 4284.
DOI: 10.3390/polym13244284
Google Scholar
[10]
Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda, and L. Lu, Development of solid-state electrolytes for sodium-ion battery–A short review, Nano Mater. Sci. (2019).
DOI: 10.1016/j.nanoms.2019.02.007
Google Scholar
[11]
L. Lutz et al, Role of Electrolyte Anions in the Na-O2 Battery: Implications for NaO2 Solvation and the Stability of the Sodium Solid Electrolyte Interphase in Glyme Ethers, Chem. Mater. 29 (2017) 6066–6075.
DOI: 10.1021/acs.chemmater.7b01953.s001
Google Scholar
[12]
D. M. C. Ould et al, New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration. Angew, Chemie - Int. Ed. 60 (2021) 24882–24887.
DOI: 10.1002/anie.202111215
Google Scholar
[13]
Q. Zhang et al, PEO-NaPF6 Blended Polymer Electrolyte for Solid State Sodium Battery, J. Electrochem. Soc. 167 (2020) 070523.
DOI: 10.1149/1945-7111/ab741b
Google Scholar
[14]
S. Anatase, A. Materials, and S. Batteries, The Effect of Electrolyte Selection on the Electrochemical Performance of Nano- Size Anatase TiO2 as Anode Materials for Solidum-Ion Batteries, ICAMCS. 2 (2019) 205–208.
DOI: 10.1021/acsaem.9b01101.s001
Google Scholar
[15]
S. Selvalakshmi, N. Vijaya, S. Selvasekarapandian, and M. Premalatha, Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application, J. Appl. Polym. Sci. 134 (2017) 1–10.
DOI: 10.1002/app.44702
Google Scholar
[16]
C. Araki and S. Hirase, Studies on the Chemical Constitution of Agar-agar. Re-investigation of Methylated Agarose of Gelidium Amansii, Bull. Chem. Soc. Jpn. 33 (1960) 291–295.
DOI: 10.1246/bcsj.33.291
Google Scholar
[17]
S. Selvalakshmi, T. Mathavan, S. Selvasekarapandian, and M. Premalatha, A study of electrochemical devices based on Agar-Agar-NH4I biopolymer electrolytes, AIP Conf. Proc. 1942 (2018).
DOI: 10.1063/1.5029150
Google Scholar
[18]
C. Araki, Structure of the Agarose Constituent of Agar-agar, Bull. Chem. Soc. Jpn. 29 543–544 (1956).
DOI: 10.1246/bcsj.29.543
Google Scholar
[19]
M. Beaumont et al, Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications, Biomacromolecules. 22 (2021) 1027–1052.
DOI: 10.1021/acs.biomac.0c01406
Google Scholar
[20]
M. Lahaye and C. Rochas, Chemical structure and physico-chemical properties of agar, Int. Work. Gelidium. 221 (1991) 137–148.
DOI: 10.1007/978-94-011-3610-5_13
Google Scholar
[21]
S. Smitha and A. Sachan, Use of agar biopolymer to improve the shear strength behavior of sabarmati sand, Int. J. Geotech. Eng. 10 (2016) 387–400.
DOI: 10.1080/19386362.2016.1152674
Google Scholar
[22]
A. Suvitha, S. Periandy, S. Boomadevi, and M. Govindarajan, Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 117 (2014) 216–224.
DOI: 10.1016/j.saa.2013.07.080
Google Scholar
[23]
H. Pasha, J. S. Hadi, Z. A. Abdulnabi, and Z. Bolandnazar, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Spectroscopic , thermal analysis and DFT computational studies of salen-type Schiff base complexes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117 (2014) 485–492.
DOI: 10.1016/j.saa.2013.08.044
Google Scholar
[24]
R. Peverati and D. G. Truhlar, Exchange-Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient, J. Chem. Theory Comput. 8 (2012) 2310−2319.
DOI: 10.1021/ct3002656
Google Scholar
[25]
E. V. Ludeña, The Kohn-Sham formalism: A critique and an extension, J. Mol. Struct. 166 (1988) 39–50.
DOI: 10.1016/0166-1280(88)80413-5
Google Scholar
[26]
W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A 1133-A 1138.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[27]
M.S. Islam and C.A.J. Fisher, Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev. 43 (2014) 185–204.
DOI: 10.1039/c3cs60199d
Google Scholar
[28]
W. Koch, M. C. Holthausen, Buchbesprechung: A Chemist's Guide to Density Functional Theory. 113 (2001).
Google Scholar
[29]
J. P. Perdew, Climbing the ladder of density functional approximations, MRS Bull. 38 (2013) 743–750.
DOI: 10.1557/mrs.2013.178
Google Scholar
[30]
C. J. Cramer and D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Phys. Chem. Chem. Phys. 11 (2009) 10757–10816.
DOI: 10.1039/b907148b
Google Scholar
[31]
T. Stauch and A. Dreuw, Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis, Chem. Rev. 116 (2016) 14137–14180.
DOI: 10.1021/acs.chemrev.6b00458
Google Scholar
[32]
K. A. Baseden and J. W. Tye, Introduction to density functional theory: Calculations by hand on the helium atom, J. Chem. Educ. 91 (2014) 2116–2123.
DOI: 10.1021/ed5004788
Google Scholar
[33]
M. Barhoumi, The Density Functional Theory and Beyond: Example and Applications, Intech. (2012) 13.
Google Scholar
[34]
W. Kohn, A. D. Becke, and R. G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (1996) 12974–12980.
DOI: 10.1021/jp960669l
Google Scholar
[35]
W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-Consistent Molecular Orbital Methods .XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys. 56 (1972) 2257–2261.
DOI: 10.1063/1.1677527
Google Scholar
[36]
A. D. Becke and A. D. Becke, Densityfunctional thermochemistry . III . The role of exact exchange Density-functional thermochemistry . III . The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652.
DOI: 10.1063/1.464913
Google Scholar
[37]
M. Domagała, M. Jabłonski, A. T. Dubis, M. Zabel, A. Pfitzner, and M. Palusiak, Testing of Exchange-Correlation Functionals of DFT for a Reliable Description of the Electron Density Distribution in Organic Molecules, Int. J. Mol. Sci. 23 (2022) 14719.
DOI: 10.3390/ijms232314719
Google Scholar
[38]
L. Lu, Can B3LYP be Improved by Optimization of the Proportions of Exchange and Correlation Functionals, Int. J. Quantum Chem. 115 (2015) 502–509.
DOI: 10.1002/qua.24876
Google Scholar
[39]
E. Colusso and A. Martucci, An overview of biopolymer-based nanocomposites for optics and electronics, J. Mater. Chem. C. 9 (2021) 5578–5593.
DOI: 10.1039/d1tc00607j
Google Scholar
[40]
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al, Gaussian, Inc., Wallingford CT, (2016).
Google Scholar
[41]
S. K. Gupta, J. Singh, S. Gupta, and A. K. Gupta, Structural and electronic properties of PVDF derived polymer: Ab initio study, AIP Conference Proceedings. 2220 (2020) 130058.
DOI: 10.1063/5.0001381
Google Scholar
[42]
H. J. Nono, D. B. Mama, J. N. Ghogomu, and E. Younang, A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives, Bioinorganic Chemistry and Applications. 2017 (2017).
DOI: 10.1155/2017/5237865
Google Scholar
[43]
H. Tavakol, A DFT Study on the Interaction of Doped Carbon Nanotubes with H2S, SO2 and Thiophene, Quantum Reports. 3 (2021) 366–375.
DOI: 10.3390/quantum3030023
Google Scholar
[44]
Sarvesh Kumar Gupta and Abhishek Kumar Gupta, Experimental and Computational Study of Lithium Salt‑/Plastic Crystal‑Assisted Ionogels, Arabian Journal for Science and Engineering. 47 (2020) 935–947.
DOI: 10.1007/s13369-021-05859-2
Google Scholar
[45]
S. U. D. Shamim, T. Hussain, Md. R. Hossian, Md. K. Hossain, F. Ahmed, T. Ferdous, and Md. A. Hossain, A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8), J. Mol. Model. 26 (2020) 1-17.
DOI: 10.1007/s00894-020-04419-z
Google Scholar
[46]
E. V. Shah, C. M. Patel, and D. R. Roy, Structure, electronic, optical and thermodynamic behavior on the polymerization of PMMA: A DFT investigation, Comput. Biol. Chem. 72 (2018) 192–198.
DOI: 10.1016/j.compbiolchem.2017.10.013
Google Scholar
[47]
J. S. Singh, IR and Raman spectra with Gaussian-09 molecular analysis of some other parameters and vibrational spectra of 5-fluoro-uracil, Res. Chem. Intermed. 46 (2020) 2457–2479.
DOI: 10.1007/s11164-020-04101-2
Google Scholar
[48]
F. Akman, A comparative study based on molecular structure, spectroscopic, electronic, thermodynamic and NBO analysis of some nitrogen-containing monomers, Springer Berlin Heidelberg. 78 (2021).
DOI: 10.1007/s00289-020-03128-0
Google Scholar
[49]
M. Sozbilir, Turkish chemistry undergraduate students' misunderstandings of Gibbs free energy, Univ. Chem. Educ. 6 (2002) 39–89.
Google Scholar
[50]
D. Farmanzadeh, A. Soltanabadi, and S. Yeganegi, DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl]hexane halides, J. Chinese Chem. Soc. 60 (2013) 551–558.
DOI: 10.1002/jccs.201200400
Google Scholar
[51]
J.C. Cruz, R. Hernández-Esparza, A. Vazquez-Mayagoitia, R. Vargas, and J. Garza, Implementation of the Molecular Electrostatic Potential over Graphics Processing Units, J. Chem. Inf. Model. 59 (2019) 3120–3127.
DOI: 10.1021/acs.jcim.8b00951
Google Scholar
[52]
J. S. Murray and P. Politzer, The electrostatic potential: An overview, WIREs Comput. Mol. Sci. 1 (2011) 153–163.
DOI: 10.1002/wcms.19
Google Scholar
[53]
F. Akman and N. Çankaya, A study of experimental and theoretical analysis of N-cyclohexylmethacrylamide monomer based on DFT and HF computations, Pigment Resin Technol. 45 (2016) 301–307.
DOI: 10.1108/prt-04-2015-0039
Google Scholar
[54]
S. Azhagiri et al, Theoretical and experimental studies of vibrational spectra and thermal analysis of 2-nitroaniline and its cation, J. Mol. Model. 16 (2010) 87–94.
DOI: 10.1007/s00894-009-0522-1
Google Scholar
[55]
L. D. Kock, M. D. S. Lekgoathi, P. L. Crouse, and B. M. Vilakazi, Solid state vibrational spectroscopy of anhydrous lithium hexafluorophosphate (LiPF6), J. Mol. Struct. 1026 (2012) 145–149.
DOI: 10.1016/j.molstruc.2012.05.053
Google Scholar
[56]
M. L. Roldán, S. A. Brandán, and A. Ben Altabef, Experimental study of the vibrational spectra of (CH 3) 3GeBr supported by DFT calculations, J. Raman Spectrosc. 40 (2009) 289–296.
DOI: 10.1002/jrs.2124
Google Scholar
[57]
X. Xuan, J. Wang, and H. Wang, Theoretical insights into PF6- and its alkali metal ion pairs: Geometries and vibrational frequencies, Electrochim. Acta. 50 (2005) 4196–4201.
DOI: 10.1016/j.electacta.2005.01.045
Google Scholar
[58]
A. Pandey, A. K. Gupta, S. Gupta, S. K. Gupta, and R. K. Yadav, Electronic, Vibrational, and Structural Study of Polysaccharide Agar-Agar Biopolymer. Nano Hybrids Compos. 33 (2021) 35–46.
DOI: 10.4028/www.scientific.net/nhc.33.35
Google Scholar