DFT Study on Na-Ion Conducting Solid Biopolymer Electrolyte-Based on Agar-Agar and NaPF6 for Sodium-Ion Batteries

Article Preview

Abstract:

This research article is focused on the structural, electronic, thermal, and vibrational properties of solid biopolymer electrolytes based on Agar-Agar and sodium hexafluorophosphate (NaPF6) salt. Herein, the density functional theory (DFT) technique is used to investigate these properties. The structural analysis provides information about the interactions between Agar-Agar and NaPF6 and hence interaction energy is analysed. Thermodynamic parameters such as Gibbs’ free energy (G), enthalpy (H), entropy (S), and specific heat (Cv) etc. are studied by frequency analysis at normal temperature pressure (NTP) of titled electrolytes. The chemical descriptors of the electrolytes have been studied using the molecular orbital theory (MOT). Molecular electrostatic potential surface (MEPS) demonstrates the three-dimensional molecular charge distribution and illustrates the electron-rich and deficit regions over the whole electrolyte system. Mulliken population analysis (MPA) gives the identification of intramolecular hydrogen bonding. The theoretical infrared (IR) study confirms the formation of the complex system between Agar-Agar and NaPF6 salt. The overall DFT studies of sodium ion-based biopolymer electrolytes have better possibilities for safe sodium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-78

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Boopathi, S. Pugalendhi, S. Selvasekarapandian, M. Premalatha, S. Monisha, and G. Aristatil, Development of proton conducting biopolymer membrane based on agar–agar for fuel cell, Ionics. 23 (2017) 2781–2790.

DOI: 10.1007/s11581-016-1876-x

Google Scholar

[2] E. Gajanand, L. K. Soni, and V. K. Dixit, Biodegradable Polymers : a Smart Strategy for Today'S Crucial Needs, Biomaterials. 3 (2014) 2319-1082.

Google Scholar

[3] R. Velu, T. Calais, A. Jayakumar, and F. Raspall, A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique, Materials (Basel). 13 (2020) 92.

DOI: 10.3390/ma13010092

Google Scholar

[4] M. Baloch and J. Labidi, Lignin biopolymer: The material of choice for advanced lithium-based batteries, RSC Adv. 11 (2021) 23644–23653.

DOI: 10.1039/d1ra02611a

Google Scholar

[5] E. Lizundia and D. Kundu, Advances in Natural Biopolymer-Based Electrolytes and Separators for Battery Applications, Adv. Funct. Mater. 31 (2021) 1–29.

DOI: 10.1002/adfm.202005646

Google Scholar

[6] M. Darder, P. Aranda, and E. Ruiz-Hitzky, Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials, Adv. Mater. 19 (2007) 1309–1319.

DOI: 10.1002/adma.200602328

Google Scholar

[7] M. E. Hassan, J. Bai, and D. Q. Dou, Biopolymers; Definition, classification and applications, Egypt. J. Chem. 62 (2019) 1725–1737.

Google Scholar

[8] S. Shanmuga Priya, M. Karthika, S. Selvasekarapandian, and R. Manjuladevi, Preparation and characterization of polymer electrolyte based on biopolymer I-Carrageenan with magnesium nitrate, Solid State Ionics. 327 (2018) 136–149.

DOI: 10.1016/j.ssi.2018.10.031

Google Scholar

[9] M. F. Bósquez-Cáceres, S. Hidalgo-Bonilla, V. M. Córdova, R. M. Michell, and J. P. Tafur, Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries : From Synthetic to Biopolymers, Polymers (Basel). 13 (2021) 4284.

DOI: 10.3390/polym13244284

Google Scholar

[10] Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda, and L. Lu, Development of solid-state electrolytes for sodium-ion battery–A short review, Nano Mater. Sci. (2019).

DOI: 10.1016/j.nanoms.2019.02.007

Google Scholar

[11] L. Lutz et al, Role of Electrolyte Anions in the Na-O2 Battery: Implications for NaO2 Solvation and the Stability of the Sodium Solid Electrolyte Interphase in Glyme Ethers, Chem. Mater. 29 (2017) 6066–6075.

DOI: 10.1021/acs.chemmater.7b01953.s001

Google Scholar

[12] D. M. C. Ould et al, New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration. Angew, Chemie - Int. Ed. 60 (2021) 24882–24887.

DOI: 10.1002/anie.202111215

Google Scholar

[13] Q. Zhang et al, PEO-NaPF6 Blended Polymer Electrolyte for Solid State Sodium Battery, J. Electrochem. Soc. 167 (2020) 070523.

DOI: 10.1149/1945-7111/ab741b

Google Scholar

[14] S. Anatase, A. Materials, and S. Batteries, The Effect of Electrolyte Selection on the Electrochemical Performance of Nano- Size Anatase TiO2 as Anode Materials for Solidum-Ion Batteries, ICAMCS. 2 (2019) 205–208.

DOI: 10.1021/acsaem.9b01101.s001

Google Scholar

[15] S. Selvalakshmi, N. Vijaya, S. Selvasekarapandian, and M. Premalatha, Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application, J. Appl. Polym. Sci. 134 (2017) 1–10.

DOI: 10.1002/app.44702

Google Scholar

[16] C. Araki and S. Hirase, Studies on the Chemical Constitution of Agar-agar. Re-investigation of Methylated Agarose of Gelidium Amansii, Bull. Chem. Soc. Jpn. 33 (1960) 291–295.

DOI: 10.1246/bcsj.33.291

Google Scholar

[17] S. Selvalakshmi, T. Mathavan, S. Selvasekarapandian, and M. Premalatha, A study of electrochemical devices based on Agar-Agar-NH4I biopolymer electrolytes, AIP Conf. Proc. 1942 (2018).

DOI: 10.1063/1.5029150

Google Scholar

[18] C. Araki, Structure of the Agarose Constituent of Agar-agar, Bull. Chem. Soc. Jpn. 29 543–544 (1956).

DOI: 10.1246/bcsj.29.543

Google Scholar

[19] M. Beaumont et al, Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications, Biomacromolecules. 22 (2021) 1027–1052.

DOI: 10.1021/acs.biomac.0c01406

Google Scholar

[20] M. Lahaye and C. Rochas, Chemical structure and physico-chemical properties of agar, Int. Work. Gelidium. 221 (1991) 137–148.

DOI: 10.1007/978-94-011-3610-5_13

Google Scholar

[21] S. Smitha and A. Sachan, Use of agar biopolymer to improve the shear strength behavior of sabarmati sand, Int. J. Geotech. Eng. 10 (2016) 387–400.

DOI: 10.1080/19386362.2016.1152674

Google Scholar

[22] A. Suvitha, S. Periandy, S. Boomadevi, and M. Govindarajan, Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 117 (2014) 216–224.

DOI: 10.1016/j.saa.2013.07.080

Google Scholar

[23] H. Pasha, J. S. Hadi, Z. A. Abdulnabi, and Z. Bolandnazar, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Spectroscopic , thermal analysis and DFT computational studies of salen-type Schiff base complexes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117 (2014) 485–492.

DOI: 10.1016/j.saa.2013.08.044

Google Scholar

[24] R. Peverati and D. G. Truhlar, Exchange-Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient, J. Chem. Theory Comput. 8 (2012) 2310−2319.

DOI: 10.1021/ct3002656

Google Scholar

[25] E. V. Ludeña, The Kohn-Sham formalism: A critique and an extension, J. Mol. Struct. 166 (1988) 39–50.

DOI: 10.1016/0166-1280(88)80413-5

Google Scholar

[26] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A 1133-A 1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[27] M.S. Islam and C.A.J. Fisher, Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev. 43 (2014) 185–204.

DOI: 10.1039/c3cs60199d

Google Scholar

[28] W. Koch, M. C. Holthausen, Buchbesprechung: A Chemist's Guide to Density Functional Theory. 113 (2001).

Google Scholar

[29] J. P. Perdew, Climbing the ladder of density functional approximations, MRS Bull. 38 (2013) 743–750.

DOI: 10.1557/mrs.2013.178

Google Scholar

[30] C. J. Cramer and D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Phys. Chem. Chem. Phys. 11 (2009) 10757–10816.

DOI: 10.1039/b907148b

Google Scholar

[31] T. Stauch and A. Dreuw, Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis, Chem. Rev. 116 (2016) 14137–14180.

DOI: 10.1021/acs.chemrev.6b00458

Google Scholar

[32] K. A. Baseden and J. W. Tye, Introduction to density functional theory: Calculations by hand on the helium atom, J. Chem. Educ. 91 (2014) 2116–2123.

DOI: 10.1021/ed5004788

Google Scholar

[33] M. Barhoumi, The Density Functional Theory and Beyond: Example and Applications, Intech. (2012) 13.

Google Scholar

[34] W. Kohn, A. D. Becke, and R. G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (1996) 12974–12980.

DOI: 10.1021/jp960669l

Google Scholar

[35] W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-Consistent Molecular Orbital Methods .XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys. 56 (1972) 2257–2261.

DOI: 10.1063/1.1677527

Google Scholar

[36] A. D. Becke and A. D. Becke, Densityfunctional thermochemistry . III . The role of exact exchange Density-functional thermochemistry . III . The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652.

DOI: 10.1063/1.464913

Google Scholar

[37] M. Domagała, M. Jabłonski, A. T. Dubis, M. Zabel, A. Pfitzner, and M. Palusiak, Testing of Exchange-Correlation Functionals of DFT for a Reliable Description of the Electron Density Distribution in Organic Molecules, Int. J. Mol. Sci. 23 (2022) 14719.

DOI: 10.3390/ijms232314719

Google Scholar

[38] L. Lu, Can B3LYP be Improved by Optimization of the Proportions of Exchange and Correlation Functionals, Int. J. Quantum Chem. 115 (2015) 502–509.

DOI: 10.1002/qua.24876

Google Scholar

[39] E. Colusso and A. Martucci, An overview of biopolymer-based nanocomposites for optics and electronics, J. Mater. Chem. C. 9 (2021) 5578–5593.

DOI: 10.1039/d1tc00607j

Google Scholar

[40] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al, Gaussian, Inc., Wallingford CT, (2016).

Google Scholar

[41] S. K. Gupta, J. Singh, S. Gupta, and A. K. Gupta, Structural and electronic properties of PVDF derived polymer: Ab initio study, AIP Conference Proceedings. 2220 (2020) 130058.

DOI: 10.1063/5.0001381

Google Scholar

[42] H. J. Nono, D. B. Mama, J. N. Ghogomu, and E. Younang, A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives, Bioinorganic Chemistry and Applications. 2017 (2017).

DOI: 10.1155/2017/5237865

Google Scholar

[43] H. Tavakol, A DFT Study on the Interaction of Doped Carbon Nanotubes with H2S, SO2 and Thiophene, Quantum Reports. 3 (2021) 366–375.

DOI: 10.3390/quantum3030023

Google Scholar

[44] Sarvesh Kumar Gupta and Abhishek Kumar Gupta, Experimental and Computational Study of Lithium Salt‑/Plastic Crystal‑Assisted Ionogels, Arabian Journal for Science and Engineering. 47 (2020) 935–947.

DOI: 10.1007/s13369-021-05859-2

Google Scholar

[45] S. U. D. Shamim, T. Hussain, Md. R. Hossian, Md. K. Hossain, F. Ahmed, T. Ferdous, and Md. A. Hossain, A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8), J. Mol. Model. 26 (2020) 1-17.

DOI: 10.1007/s00894-020-04419-z

Google Scholar

[46] E. V. Shah, C. M. Patel, and D. R. Roy, Structure, electronic, optical and thermodynamic behavior on the polymerization of PMMA: A DFT investigation, Comput. Biol. Chem. 72 (2018) 192–198.

DOI: 10.1016/j.compbiolchem.2017.10.013

Google Scholar

[47] J. S. Singh, IR and Raman spectra with Gaussian-09 molecular analysis of some other parameters and vibrational spectra of 5-fluoro-uracil, Res. Chem. Intermed. 46 (2020) 2457–2479.

DOI: 10.1007/s11164-020-04101-2

Google Scholar

[48] F. Akman, A comparative study based on molecular structure, spectroscopic, electronic, thermodynamic and NBO analysis of some nitrogen-containing monomers, Springer Berlin Heidelberg. 78 (2021).

DOI: 10.1007/s00289-020-03128-0

Google Scholar

[49] M. Sozbilir, Turkish chemistry undergraduate students' misunderstandings of Gibbs free energy, Univ. Chem. Educ. 6 (2002) 39–89.

Google Scholar

[50] D. Farmanzadeh, A. Soltanabadi, and S. Yeganegi, DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl]hexane halides, J. Chinese Chem. Soc. 60 (2013) 551–558.

DOI: 10.1002/jccs.201200400

Google Scholar

[51] J.C. Cruz, R. Hernández-Esparza, A. Vazquez-Mayagoitia, R. Vargas, and J. Garza, Implementation of the Molecular Electrostatic Potential over Graphics Processing Units, J. Chem. Inf. Model. 59 (2019) 3120–3127.

DOI: 10.1021/acs.jcim.8b00951

Google Scholar

[52] J. S. Murray and P. Politzer, The electrostatic potential: An overview, WIREs Comput. Mol. Sci. 1 (2011) 153–163.

DOI: 10.1002/wcms.19

Google Scholar

[53] F. Akman and N. Çankaya, A study of experimental and theoretical analysis of N-cyclohexylmethacrylamide monomer based on DFT and HF computations, Pigment Resin Technol. 45 (2016) 301–307.

DOI: 10.1108/prt-04-2015-0039

Google Scholar

[54] S. Azhagiri et al, Theoretical and experimental studies of vibrational spectra and thermal analysis of 2-nitroaniline and its cation, J. Mol. Model. 16 (2010) 87–94.

DOI: 10.1007/s00894-009-0522-1

Google Scholar

[55] L. D. Kock, M. D. S. Lekgoathi, P. L. Crouse, and B. M. Vilakazi, Solid state vibrational spectroscopy of anhydrous lithium hexafluorophosphate (LiPF6), J. Mol. Struct. 1026 (2012) 145–149.

DOI: 10.1016/j.molstruc.2012.05.053

Google Scholar

[56] M. L. Roldán, S. A. Brandán, and A. Ben Altabef, Experimental study of the vibrational spectra of (CH 3) 3GeBr supported by DFT calculations, J. Raman Spectrosc. 40 (2009) 289–296.

DOI: 10.1002/jrs.2124

Google Scholar

[57] X. Xuan, J. Wang, and H. Wang, Theoretical insights into PF6- and its alkali metal ion pairs: Geometries and vibrational frequencies, Electrochim. Acta. 50 (2005) 4196–4201.

DOI: 10.1016/j.electacta.2005.01.045

Google Scholar

[58] A. Pandey, A. K. Gupta, S. Gupta, S. K. Gupta, and R. K. Yadav, Electronic, Vibrational, and Structural Study of Polysaccharide Agar-Agar Biopolymer. Nano Hybrids Compos. 33 (2021) 35–46.

DOI: 10.4028/www.scientific.net/nhc.33.35

Google Scholar