Application of Machine Learning-Based Regression Model to rGO-SnO2 Nanohybrid-Based Gas Sensor Analysis

Article Preview

Abstract:

Designing a model that utilizes previously reported experimental data on graphene and metal oxide nanoparticle-based hybrids and nanocomposites to predict the gas sensor response can be a promising approach for developing innovative and effective gas sensors. In this work, experimental data were extracted from published reviews and research articles to build a dataset for training various machine learning (ML) models. The compiled dataset focuses on the rGO-SnO2 nanohybrid-based chemiresistive sensor and includes features such as gas concentration (ppm), operating temperature (°C), sensor response (%), response time (s), and recovery time (s). The sensor response and gas concentration were considered as target variables, one at a time. Several machine learning models, such as random forest regression (RFR), support vector regression (SVR), gradient boosting regression (GBR), and extreme gradient boosting regression (XGBR), were employed to predict target variables. Prediction accuracy was evaluated using the coefficient of determination (R² score), root mean squared error (RMSE), and mean absolute error (MAE). Among all the models, the XGBR ML model achieved the best performance, with a maximum R2 score (0.93) and minimum RMSE (0.52) and MAE (0.23) values when predicting gas concentration and a highest R2 score of 0.99 with RMSE and MAE values of 7.97 and 5.92 when predicting sensor response as the target variable. This study demonstrates the application of machine learning for the rational design of rGO-SnO2 nanohybrid-based NO2 gas sensors, supporting their potential use in various applications such as indoor and outdoor monitoring and industrial gas leakage detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review, Nano-Micro Lett. 7 (2015) 97–120.

DOI: 10.1007/s40820-014-0023-3

Google Scholar

[2] U. Latif, F.L. Dickert, Graphene hybrid materials in gas sensing applications, Sensors (Switzerland) 15 (2015) 30504–30524.

DOI: 10.3390/s151229814

Google Scholar

[3] K. Iwata, H. Abe, T. Ma, D. Tadaki, A. Hirano-Iwata, Y. Kimura, S. Suda, M. Niwano, Application of neural network based regression model to gas concentration analysis of TiO2 nanotube-type gas sensors, Sensors Actuators B Chem. 361 (2022) 131732.

DOI: 10.1016/j.snb.2022.131732

Google Scholar

[4] R. Zhang, X. Liu, T. Zhou, L. Wang, T. Zhang, Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor, J. Colloid Interface Sci. 524 (2018) 76–83.

DOI: 10.1016/j.jcis.2018.04.015

Google Scholar

[5] J. Li, M. Yang, J. Guo, X. Zhang, Y. Xu, X. Cheng, L. Huo, Construction of highly efficient In2O3/SnO2 sensor for real-time NO2 monitoring at near room temperature, Chem. Eng. J. 498 (2024).

DOI: 10.1016/j.cej.2024.155286

Google Scholar

[6] N. Hikmah, H.F. Hawari, M. Gupta, Design and simulation of interdigitated electrode for GrapheneSnO2 sensor on acetone gas, Indones. J. Electr. Eng. Comput. Sci. 19 (2020) 119–125.

DOI: 10.11591/ijeecs.v19.i1.pp119-125

Google Scholar

[7] P. Kumar, H.F. Hawari, M. Gupta, W. Xian, R. Leong, Comparative investigation of surface ‑ electrical properties of functionalized graphene and MXene thin films for ­ CO 2 gas sensing, J. Mater. Sci. (2024) 22132–22148.

DOI: 10.1007/s10853-024-10440-x

Google Scholar

[8] M. Gupta, H.F. Hawari, P. Kumar, Z.A. Burhanudin, N. Tansu, Functionalized reduced graphene oxide thin films for ultrahigh co2 gas sensing performance at room temperature, Nanomaterials 11 (2021) 1–18.

DOI: 10.3390/nano11030623

Google Scholar

[9] Y. Zhang, Z. Yang, L. Zhao, T. Fei, S. Liu, T. Zhang, Boosting room-temperature ppb-level NO2 sensing over reduced graphene oxide by co-decoration of α-Fe2O3 and SnO2 nanocrystals, J. Colloid Interface Sci. 612 (2022) 689–700. https://doi.org/10.1016/j.jcis. 2022.01.009.

DOI: 10.1016/j.jcis.2022.01.009

Google Scholar

[10] M. Gupta, N. Athirah, H.F. Hawari, Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature, Indones. J. Electr. Eng. Comput. Sci. 18 (2020) 1279–1286.

DOI: 10.11591/ijeecs.v18.i3.pp1279-1286

Google Scholar

[11] M. Gupta, H.F. Hawari, P. Kumar, Z.A. Burhanudin, Copper Oxide/Functionalized Graphene Hybrid Nanostructures for Room Temperature Gas Sensing Applications, Crystals 12 (2022).

DOI: 10.3390/cryst12020264

Google Scholar

[12] Y. hai Gui, H. yan Wang, K. Tian, L. le Yang, H. shi Guo, H. zhong Zhang, S. ming Fang, Y. Wang, Enhanced gas sensing properties to NO2 of SnO2/rGO nanocomposites synthesized by microwave-assisted gas-liquid interfacial method, Ceram. Int. 44 (2018) 4900–4907.

DOI: 10.1016/j.ceramint.2017.12.080

Google Scholar

[13] P. Kumar, M. Gupta, H.F. Hawari, V. Kumar, Chemical and surface modification in graphene oxide for optimum CO 2 gas sensing performance, Nano Express 6 (2025). https://doi.org/.

DOI: 10.1088/2632-959X/adc758

Google Scholar

[14] S. Liu, Z. Wang, Y. Zhang, C. Zhang, T. Zhang, High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids, Sensors Actuators, B Chem. 211 (2015) 318–324.

DOI: 10.1016/j.snb.2015.01.127

Google Scholar

[15] I. Cho, K. Lee, Y.C. Sim, J.S. Jeong, M. Cho, H. Jung, M. Kang, Y.H. Cho, S.C. Ha, K.J. Yoon, I. Park, Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor, Light Sci. Appl. 12 (2023).

DOI: 10.1038/s41377-023-01120-7

Google Scholar

[16] S.Y. Heng, K.Z. Yap, W.Y. Lim, N. Ramakrishnan, AI-Assisted Sensor System for the Acetone and Ethanol Detection Using Commercial Metal Oxide-Based Sensor Arrays and Convolutional Neural Network, Sens. Imaging 25 (2024) 1–18.

DOI: 10.1007/s11220-024-00501-5

Google Scholar

[17] T. Hayasaka, A. Lin, V.C. Copa, L.P. Lopez, R.A. Loberternos, L.I.M. Ballesteros, Y. Kubota, Y. Liu, A.A. Salvador, L. Lin, An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol, Microsystems Nanoeng. 6 (2020).

DOI: 10.1038/s41378-020-0161-3

Google Scholar

[18] L. Höfler, Good results from sensor data: Performance of machine learning algorithms for regression problems in chemical sensors, Sensors Actuators B Chem. 421 (2024).

DOI: 10.1016/j.snb.2024.136528

Google Scholar

[19] S. Kwak, J. Kim, H. Ding, X. Xu, R. Chen, J. Guo, H. Fu, Machine learning prediction of the mechanical properties of γ-TiAl alloys produced using random forest regression model, J. Mater. Res. Technol. 18 (2022) 520–530.

DOI: 10.1016/j.jmrt.2022.02.108

Google Scholar

[20] F. Fathalian, S. Aarabi, A. Ghaemi, A. Hemmati, Intelligent prediction models based on machine learning for CO2 capture performance by graphene oxide-based adsorbents, Sci. Rep. 12 (2022) 1–20.

DOI: 10.1038/s41598-022-26138-6

Google Scholar

[21] A. Hazra, N. Samane, S. Basu, A Review on Metal Oxide-Graphene Derivative Nano-Composite Thin Film Gas Sensors, Multilayer Thin Film. - Versatile Appl. Mater. Eng. (2020).

DOI: 10.5772/intechopen.90622

Google Scholar

[22] H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature, Sensors Actuators, B Chem. 190 (2014) 472–478.

DOI: 10.1016/j.snb.2013.08.067

Google Scholar

[23] S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovska, J. Chen, Indium-doped SnO2 nanoparticle-graphene nanohybrids: Simple one-pot synthesis and their selective detection of NO2, J. Mater. Chem. A 1 (2013) 4462–4467.

DOI: 10.1039/c3ta01673k

Google Scholar

[24] R. Sivakumar, K. Krishnamoorthi, S. Vadivel, S. Govindasamy, Progress towards a novel NO2 gas sensor based on SnO2/RGO hybrid sensors by a facial hydrothermal approach, Diam. Relat. Mater. 116 (2021) 108418.

DOI: 10.1016/j.diamond.2021.108418

Google Scholar

[25] G. Li, Y. Shen, P. Zhou, F. Hao, P. Fang, D. Wei, D. Meng, X. San, Design and application of highly responsive and selective rGO-SnO2 nanocomposites for NO2 monitoring, Mater. Charact. 163 (2020) 110284.

DOI: 10.1016/j.matchar.2020.110284

Google Scholar

[26] Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing, J. Colloid Interface Sci. 514 (2018) 599–608.

DOI: 10.1016/j.jcis.2017.12.075

Google Scholar

[27] X. Zhu, Y. Guo, H. Ren, C. Gao, Y. Zhou, Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates, Sensors Actuators B Chem. 248 (2017) 560–570.

DOI: 10.1016/j.snb.2017.04.030

Google Scholar

[28] P.K. Kanti, P. Paramasivam, V.V. Wanatasanappan, S. Dhanasekaran, P. Sharma, Experimental and explainable machine learning approach on thermal conductivity and viscosity of water based graphene oxide based mono and hybrid nanofluids, Sci. Rep. 14 (2024) 1–16.

DOI: 10.1038/s41598-024-81955-1

Google Scholar

[29] D. Veeman, S. Sudharsan, G.J. Surendhar, R. Shanmugam, L. Guo, Machine learning model for predicting the hardness of additively manufactured acrylonitrile butadiene styrene, Mater. Today Commun. 35 (2023) 106147.

DOI: 10.1016/j.mtcomm.2023.106147

Google Scholar

[30] J. Zhang, Y. Xue, Q. Sun, T. Zhang, Y. Chen, W. Yu, Y. Xiong, X. Wei, G. Yu, H. Wan, P. Wang, A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases, Sensors Actuators, B Chem. 326 (2021) 128822.

DOI: 10.1016/j.snb.2020.128822

Google Scholar

[31] R. Biagi, M. Ferrari, S. Venturi, M. Sacco, G. Montegrossi, F. Tassi, Development and machine learning-based calibration of low-cost multiparametric stations for the measurement of CO2 and CH4 in air, Heliyon 10 (2024).

DOI: 10.1016/j.heliyon.2024.e29772

Google Scholar