[1]
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review, Nano-Micro Lett. 7 (2015) 97–120.
DOI: 10.1007/s40820-014-0023-3
Google Scholar
[2]
U. Latif, F.L. Dickert, Graphene hybrid materials in gas sensing applications, Sensors (Switzerland) 15 (2015) 30504–30524.
DOI: 10.3390/s151229814
Google Scholar
[3]
K. Iwata, H. Abe, T. Ma, D. Tadaki, A. Hirano-Iwata, Y. Kimura, S. Suda, M. Niwano, Application of neural network based regression model to gas concentration analysis of TiO2 nanotube-type gas sensors, Sensors Actuators B Chem. 361 (2022) 131732.
DOI: 10.1016/j.snb.2022.131732
Google Scholar
[4]
R. Zhang, X. Liu, T. Zhou, L. Wang, T. Zhang, Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor, J. Colloid Interface Sci. 524 (2018) 76–83.
DOI: 10.1016/j.jcis.2018.04.015
Google Scholar
[5]
J. Li, M. Yang, J. Guo, X. Zhang, Y. Xu, X. Cheng, L. Huo, Construction of highly efficient In2O3/SnO2 sensor for real-time NO2 monitoring at near room temperature, Chem. Eng. J. 498 (2024).
DOI: 10.1016/j.cej.2024.155286
Google Scholar
[6]
N. Hikmah, H.F. Hawari, M. Gupta, Design and simulation of interdigitated electrode for GrapheneSnO2 sensor on acetone gas, Indones. J. Electr. Eng. Comput. Sci. 19 (2020) 119–125.
DOI: 10.11591/ijeecs.v19.i1.pp119-125
Google Scholar
[7]
P. Kumar, H.F. Hawari, M. Gupta, W. Xian, R. Leong, Comparative investigation of surface ‑ electrical properties of functionalized graphene and MXene thin films for CO 2 gas sensing, J. Mater. Sci. (2024) 22132–22148.
DOI: 10.1007/s10853-024-10440-x
Google Scholar
[8]
M. Gupta, H.F. Hawari, P. Kumar, Z.A. Burhanudin, N. Tansu, Functionalized reduced graphene oxide thin films for ultrahigh co2 gas sensing performance at room temperature, Nanomaterials 11 (2021) 1–18.
DOI: 10.3390/nano11030623
Google Scholar
[9]
Y. Zhang, Z. Yang, L. Zhao, T. Fei, S. Liu, T. Zhang, Boosting room-temperature ppb-level NO2 sensing over reduced graphene oxide by co-decoration of α-Fe2O3 and SnO2 nanocrystals, J. Colloid Interface Sci. 612 (2022) 689–700. https://doi.org/10.1016/j.jcis. 2022.01.009.
DOI: 10.1016/j.jcis.2022.01.009
Google Scholar
[10]
M. Gupta, N. Athirah, H.F. Hawari, Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature, Indones. J. Electr. Eng. Comput. Sci. 18 (2020) 1279–1286.
DOI: 10.11591/ijeecs.v18.i3.pp1279-1286
Google Scholar
[11]
M. Gupta, H.F. Hawari, P. Kumar, Z.A. Burhanudin, Copper Oxide/Functionalized Graphene Hybrid Nanostructures for Room Temperature Gas Sensing Applications, Crystals 12 (2022).
DOI: 10.3390/cryst12020264
Google Scholar
[12]
Y. hai Gui, H. yan Wang, K. Tian, L. le Yang, H. shi Guo, H. zhong Zhang, S. ming Fang, Y. Wang, Enhanced gas sensing properties to NO2 of SnO2/rGO nanocomposites synthesized by microwave-assisted gas-liquid interfacial method, Ceram. Int. 44 (2018) 4900–4907.
DOI: 10.1016/j.ceramint.2017.12.080
Google Scholar
[13]
P. Kumar, M. Gupta, H.F. Hawari, V. Kumar, Chemical and surface modification in graphene oxide for optimum CO 2 gas sensing performance, Nano Express 6 (2025). https://doi.org/.
DOI: 10.1088/2632-959X/adc758
Google Scholar
[14]
S. Liu, Z. Wang, Y. Zhang, C. Zhang, T. Zhang, High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids, Sensors Actuators, B Chem. 211 (2015) 318–324.
DOI: 10.1016/j.snb.2015.01.127
Google Scholar
[15]
I. Cho, K. Lee, Y.C. Sim, J.S. Jeong, M. Cho, H. Jung, M. Kang, Y.H. Cho, S.C. Ha, K.J. Yoon, I. Park, Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor, Light Sci. Appl. 12 (2023).
DOI: 10.1038/s41377-023-01120-7
Google Scholar
[16]
S.Y. Heng, K.Z. Yap, W.Y. Lim, N. Ramakrishnan, AI-Assisted Sensor System for the Acetone and Ethanol Detection Using Commercial Metal Oxide-Based Sensor Arrays and Convolutional Neural Network, Sens. Imaging 25 (2024) 1–18.
DOI: 10.1007/s11220-024-00501-5
Google Scholar
[17]
T. Hayasaka, A. Lin, V.C. Copa, L.P. Lopez, R.A. Loberternos, L.I.M. Ballesteros, Y. Kubota, Y. Liu, A.A. Salvador, L. Lin, An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol, Microsystems Nanoeng. 6 (2020).
DOI: 10.1038/s41378-020-0161-3
Google Scholar
[18]
L. Höfler, Good results from sensor data: Performance of machine learning algorithms for regression problems in chemical sensors, Sensors Actuators B Chem. 421 (2024).
DOI: 10.1016/j.snb.2024.136528
Google Scholar
[19]
S. Kwak, J. Kim, H. Ding, X. Xu, R. Chen, J. Guo, H. Fu, Machine learning prediction of the mechanical properties of γ-TiAl alloys produced using random forest regression model, J. Mater. Res. Technol. 18 (2022) 520–530.
DOI: 10.1016/j.jmrt.2022.02.108
Google Scholar
[20]
F. Fathalian, S. Aarabi, A. Ghaemi, A. Hemmati, Intelligent prediction models based on machine learning for CO2 capture performance by graphene oxide-based adsorbents, Sci. Rep. 12 (2022) 1–20.
DOI: 10.1038/s41598-022-26138-6
Google Scholar
[21]
A. Hazra, N. Samane, S. Basu, A Review on Metal Oxide-Graphene Derivative Nano-Composite Thin Film Gas Sensors, Multilayer Thin Film. - Versatile Appl. Mater. Eng. (2020).
DOI: 10.5772/intechopen.90622
Google Scholar
[22]
H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature, Sensors Actuators, B Chem. 190 (2014) 472–478.
DOI: 10.1016/j.snb.2013.08.067
Google Scholar
[23]
S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovska, J. Chen, Indium-doped SnO2 nanoparticle-graphene nanohybrids: Simple one-pot synthesis and their selective detection of NO2, J. Mater. Chem. A 1 (2013) 4462–4467.
DOI: 10.1039/c3ta01673k
Google Scholar
[24]
R. Sivakumar, K. Krishnamoorthi, S. Vadivel, S. Govindasamy, Progress towards a novel NO2 gas sensor based on SnO2/RGO hybrid sensors by a facial hydrothermal approach, Diam. Relat. Mater. 116 (2021) 108418.
DOI: 10.1016/j.diamond.2021.108418
Google Scholar
[25]
G. Li, Y. Shen, P. Zhou, F. Hao, P. Fang, D. Wei, D. Meng, X. San, Design and application of highly responsive and selective rGO-SnO2 nanocomposites for NO2 monitoring, Mater. Charact. 163 (2020) 110284.
DOI: 10.1016/j.matchar.2020.110284
Google Scholar
[26]
Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing, J. Colloid Interface Sci. 514 (2018) 599–608.
DOI: 10.1016/j.jcis.2017.12.075
Google Scholar
[27]
X. Zhu, Y. Guo, H. Ren, C. Gao, Y. Zhou, Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates, Sensors Actuators B Chem. 248 (2017) 560–570.
DOI: 10.1016/j.snb.2017.04.030
Google Scholar
[28]
P.K. Kanti, P. Paramasivam, V.V. Wanatasanappan, S. Dhanasekaran, P. Sharma, Experimental and explainable machine learning approach on thermal conductivity and viscosity of water based graphene oxide based mono and hybrid nanofluids, Sci. Rep. 14 (2024) 1–16.
DOI: 10.1038/s41598-024-81955-1
Google Scholar
[29]
D. Veeman, S. Sudharsan, G.J. Surendhar, R. Shanmugam, L. Guo, Machine learning model for predicting the hardness of additively manufactured acrylonitrile butadiene styrene, Mater. Today Commun. 35 (2023) 106147.
DOI: 10.1016/j.mtcomm.2023.106147
Google Scholar
[30]
J. Zhang, Y. Xue, Q. Sun, T. Zhang, Y. Chen, W. Yu, Y. Xiong, X. Wei, G. Yu, H. Wan, P. Wang, A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases, Sensors Actuators, B Chem. 326 (2021) 128822.
DOI: 10.1016/j.snb.2020.128822
Google Scholar
[31]
R. Biagi, M. Ferrari, S. Venturi, M. Sacco, G. Montegrossi, F. Tassi, Development and machine learning-based calibration of low-cost multiparametric stations for the measurement of CO2 and CH4 in air, Heliyon 10 (2024).
DOI: 10.1016/j.heliyon.2024.e29772
Google Scholar