[1]
Shehzad, F., Hussein, I. A., Kamal, M. S., Ahmad, W., Sultan, A. S.; and Nasser, M. S., Polymeric surfactants and emerging alternatives used in the demulsification of produced water: A review, Polymer Reviews (2018) 58(1) 63-101.
DOI: 10.1080/15583724.2017.1340308
Google Scholar
[2]
Abdulredha, M. M., Siti Aslina, H.; and Luqman, C. A.,Overview on petroleum emulsions, formation, influence and demulsification treatment techniques, Arabian Journal of Chemistry (2020) 13(1), 3403-3428
DOI: 10.1016/j.arabjc.2018.11.014
Google Scholar
[3]
Zolfaghari, R., Fakhru'l-Razi, A.,Abdullah, L. C.,Elnashaie, S. S. E. H.; and Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Separation and Purification Technology (2016) 170, 377-407.
DOI: 10.1016/j.seppur.2016.06.026
Google Scholar
[4]
Chang, C.-C.,Nowbahar, A.,Mansard, V.,Williams, I.,Mecca, J.,Schmitt, A. K.,Kalantar, T. H., Kuo, T.-C.; and Squires, T. M., Interfacial rheology and heterogeneity of aging asphaltene layers at the water–oil interface, Langmuir (2018) 34(19), 5409-5415.
DOI: 10.1021/acs.langmuir.8b00176
Google Scholar
[5]
Delgado-Linares, J. G.,Pereira, J. C.,Rondón, M.,Bullon, J.; and Salager, J.-L., Breaking of water-in-crude oil emulsions. 6. Estimating the demulsifier performance at optimum formulation from both the required dose and the attained instability, Energy & Fuels (2016) 30(7), 5483-5491.
DOI: 10.1021/acs.energyfuels.6b00666
Google Scholar
[6]
Li, Z.,Yin, S.,Tan, G.,Zhao, S.,Shi, Z.,Jing, B.,Zhai, L.; and Tan, Y., Synthesis and properties of novel branched polyether as demulsifiers for polymer flooding, Colloid and Polymer Science (2016) 294, 1943-1958.
DOI: 10.1007/s00396-016-3956-x
Google Scholar
[7]
Al-Sabagh, A. M.,Kandile, N. G.; and Noor El-Din, M. R., Functions of demulsifiers in the petroleum industry, Separation Science and Technology (2011) 46(7), 1144-1163.
DOI: 10.1080/01496395.2010.550595
Google Scholar
[8]
Fan, G., Lyu, R., Gao, X., Liang, C.; and Wang, C., MPEG grafted quaternized carboxymethyl chitosan for demulsification of crude oil emulsions, Journal of Applied Polymer Science (2018) 135(7), 45867.
DOI: 10.1002/app.45867
Google Scholar
[9]
Liu, J., Zhang, Y., Peng, K., Zhao, X., Xiong, Y.; and Huang, X., A review of the interfacial stability mechanism of aging oily sludge: Heavy components, inorganic particles, and their synergism, Journal of Hazardous Materials (2021) 415, 125624.
DOI: 10.1016/j.jhazmat.2021.125624
Google Scholar
[10]
Roostaie, T.,Farsi, M., Rahimpour, M. R.; and Biniaz, P., Performance of biodegradable cellulose based agents for demulsification of crude oil: Dehydration capacity and rate, Separation and Purification Technology (2017) 179, 291-296.
DOI: 10.1016/j.seppur.2017.01.036
Google Scholar
[11]
Issaka, S. A.,Nour, A. H.; and Yunus, R. M., Review on the fundamental aspects of petroleum oil emulsions and techniques of demulsification, Journal of Petroleum & Environmental Biotechnology (2015) 6(2), 1.
DOI: 10.4172/2157-7463.1000214
Google Scholar
[12]
Yi, M.,Huang, J.; and Wang, L., Research on crude oil demulsification using the combined method of ultrasound and chemical demulsifier, Journal of Chemistry (2017).
DOI: 10.1155/2017/9147926
Google Scholar
[13]
Saad, M., Kamil, M., Abdurahman, N., Yunus, R. M.; and Awad, O. I., An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions, Processes (2019) 7(7), 470.
DOI: 10.3390/pr7070470
Google Scholar
[14]
Hamedi, H.,Rezaei, N.; and Zendehboudi, S., A comprehensive review on demulsification using functionalized magnetic nanoparticles, Journal of Cleaner Production (2022) 134868.
DOI: 10.1016/j.jclepro.2022.134868
Google Scholar
[15]
Xu, H., Jia, W., Ren, S.; and Wang, J., Novel and recyclable demulsifier of expanded perlite grafted by magnetic nanoparticles for oil separation from emulsified oil wastewaters, Chemical Engineering Journal (2018) 337, 10-18.
DOI: 10.1016/j.cej.2017.12.084
Google Scholar
[16]
Daniel-David, D.,Le Follotec, A.,Pezron, I.,Dalmazzone, C.,Noik, C.,Barre, L.; and Komunjer, L., Destabilisation of water-in-crude oil emulsions by silicone copolymer demulsifiers, Oil & Gas Science and Technology-Revue de l'IFP (2008) 63(1), 165-173.
DOI: 10.2516/ogst:2008002
Google Scholar
[17]
Pradilla, D.,Ramírez, J.,Zanetti, F.; and Álvarez, O., Demulsifier performance and dehydration mechanisms in colombian heavy crude oil emulsions, Energy & Fuels (2017) 31(10),10369-10377.
DOI: 10.1021/acs.energyfuels.7b01021
Google Scholar
[18]
Wang, D.,Yang, D.,Huang, C.,Huang, Y.,Yang, D.,Zhang, H.,Liu, Q.,Tang, T.,El-Din, M. G.; and Kemppi, T., Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review, Fuel (2021) 286, 119390.
DOI: 10.1016/j.fuel.2020.119390
Google Scholar
[19]
Kokal, S., Crude-oil emulsions: A state-of-the-art review, SPE Production & facilities (2005) 20(01), 5-13.
DOI: 10.2118/77497-pa
Google Scholar
[20]
Zhang, Y., Gao, B., Lu, L., Yue, Q., Wang, Q.; and Jia, Y., Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor–coagulation process, Journal of Petroleum Science and Engineering (2010) 74(1-2), 14-19.
DOI: 10.1016/j.petrol.2010.08.001
Google Scholar
[21]
Zhang, Z.,Ai, G.,Zeng, G.,Yuan, H.,Yang, Y.,Shen, L.,Feng, X.,Ye, F.; and Mi, Y, Demulsification of water-in-crude oil emulsion driven by a three-branch structure demulsifier, Journal of Molecular Liquids (2022) 354, 118822.
DOI: 10.1016/j.molliq.2022.118822
Google Scholar
[22]
Peng, J.,Liu, Q.,Xu, Z.; and Masliyah, J., Novel magnetic demulsifier for water removal from diluted bitumen emulsion, Energy & fuels (2012) 26(5), 2705-2710.
DOI: 10.1021/ef2014259
Google Scholar
[23]
Farooq, U.,Patil, A.,Panjwani, B.; and Simonsen, G., Review on application of nanotechnology for asphaltene adsorption, crude oil demulsification, and produced water treatment, Energy & Fuels (2021) 35(23), 19191-19210.
DOI: 10.1021/acs.energyfuels.1c01990
Google Scholar
[24]
Mu, Y., Liu, J.,Liu, J.; and Ren, S., Preparation and demulsification performance of modified attapulgite nanoparticle demulsifier, Fuel (2022) 313, 123038.
DOI: 10.1016/j.fuel.2021.123038
Google Scholar
[25]
Wang, N.,Fuh, J. Y. H.,Dheen, S. T.; and Senthil Kumar, A., Synthesis methods of functionalized nanoparticles: a review, Bio-Design and Manufacturing (2021) 4(2), 379-404.
DOI: 10.1007/s42242-020-00106-3
Google Scholar
[26]
Nassar, N. N.,Hassan, A.; and Vitale, G., Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles, Applied Catalysis A: General (2014) 484, 161-171.
DOI: 10.1016/j.apcata.2014.07.017
Google Scholar
[27]
He, X.,Liang, C.,Liu, Q.; and Xu, Z., Magnetically responsive Janus nanoparticles synthesized using cellulosic materials for enhanced phase separation in oily wastewaters and water-in-crude oil emulsions, Chemical Engineering Journal (2019) 378, 122045.
DOI: 10.1016/j.cej.2019.122045
Google Scholar
[28]
Hassan, S. A., Abdalla, B. K.; and Mustafa, M. A., Addition of silica nano-particles for the enhancement of crude oil demulsification process, Petroleum Science and Technology (2019) 37(13), 1603-1611.
DOI: 10.1080/10916466.2019.1602634
Google Scholar
[29]
Nikkhah, M., Tohidian, T.,Rahimpour, M. R.; and Jahanmiri, A., Efficient demulsification of water-in-oil emulsion by a novel nano-titania modified chemical demulsifier, Chemical Engineering Research and Design (2015) 94, 164-172.
DOI: 10.1016/j.cherd.2014.07.021
Google Scholar
[30]
Zhou, J., Sui, H., Ma, J.,Li, X.,Al-Shiaani, N. H.; and He, L., Fast demulsification of oil-water emulsions at room temperature by functionalized magnetic nanoparticles, Separation and Purification Technology (2021) 274, 118967.
DOI: 10.1016/j.seppur.2021.118967
Google Scholar
[31]
Zhou, J., Zhang, X., He, L.,Sui, H.; and Li, X., Nano-modification of carboxylated polyether for enhanced room temperature demulsification of oil-water emulsions: Synthesis, performance and mechanisms, Journal of Hazardous Materials (2022) 439, 129654
DOI: 10.1016/j.jhazmat.2022.129654
Google Scholar
[32]
Fang-Hui, W. and Hong, Z., The application and research of dispersing in situ nano-SiO2 in polyether demulsifier TA1031, Journal of dispersion science and technology (2008) 29(8), 1081-1084.
DOI: 10.1080/01932690701815903
Google Scholar
[33]
Javadian, S.,Bahri, M.,Sadrpoor, S. M.,Rezaei, Z.; and Kakemam, J., Structure effect in the demulsification performance of cationic surfactants, Journal of Petroleum Science and Engineering (2022) 218, 110895.
DOI: 10.1016/j.petrol.2022.110895
Google Scholar
[34]
Gandomkar, G., Bekhradinassab, E., Sabbaghi, S.; and Zerafat, M., Improvement of chemical demulsifier performance using silica nanoparticles, International Journal of Chemical and Molecular Engineering (2016) 9(4), 585-588.
Google Scholar
[35]
Hasanshahi, Z.,Parvasi, P.,Zerafat, M. M.; and Sabbaghi, S., Experimental Investigation of Fe3O4-Chitosan Nanocomposite as a Nano-Demulsifier for Water in Crude Oil Separation, Journal of Nanoanalysis (2021) 8(1), 41-51.
Google Scholar
[36]
Adewunmi, A. A.,Kamal, M. S.; and Solling, T. I., Application of magnetic nanoparticles in demulsification: A review on synthesis, performance, recyclability, and challenges, Journal of Petroleum Science and Engineering (2021) 196, 107680.
DOI: 10.1016/j.petrol.2020.107680
Google Scholar
[37]
Azizi, N. and Bashipour, F., Demulsification of water-in-oil emulsions applying Fe3O4 magnetic nanoparticles for demulsifier modification: Experimental optimization via response surface methodology, Journal of Petroleum Science and Engineering (2022) 216, 110806.
DOI: 10.1016/j.petrol.2022.110806
Google Scholar
[38]
Li, S.,Li, N.,Yang, S.,Liu, F.; and Zhou, J., The synthesis of a novel magnetic demulsifier and its application for the demulsification of oil-charged industrial wastewaters, Journal of Materials Chemistry A (2014) 2(1), 94-99.
DOI: 10.1039/c3ta12952g
Google Scholar
[39]
Lü, T., Zhang, S., Qi, D., Zhang, D.; and Zhao, H., Thermosensitive poly (N-isopropylacrylamide)-grafted magnetic nanoparticles for efficient treatment of emulsified oily wastewater, Journal of Alloys and Compounds (2016) 688, 513-520.
DOI: 10.1016/j.jallcom.2016.07.262
Google Scholar
[40]
Simonsen, G., Strand, M.; and Øye, G., Potential applications of magnetic nanoparticles within separation in the petroleum industry, Journal of Petroleum Science and Engineering (2018) 165, 488-495
DOI: 10.1016/j.petrol.2018.02.048
Google Scholar
[41]
Sun, N., Sun, H., Hu, J., Xu, S., Shen, L., & Ma, Y. Using a New Fe3O4@ CPAM Magnetic Flocculant and Microwave to Demulsify Heavy Oil-in-Water Emulsions. ACS omega (2024) 9(8), 9202-9215.
DOI: 10.1021/acsomega.3c08238
Google Scholar
[42]
Fossati, A., Alho, M. M.; and Jacobo, S. E., Covalent functionalized magnetic nanoparticles for crude oil recovery, Materials Chemistry and Physics (2019) 238 121910.
DOI: 10.1016/j.matchemphys.2019.121910
Google Scholar
[43]
Xu, H., Wang, J.; and Ren, S., Removal of Oil from a Crude Oil-in-Water Emulsion by a Magnetically Recyclable Diatomite Demulsifier, Energy & Fuels (2019) 33(11), 11574-11583
DOI: 10.1021/acs.energyfuels.9b02440
Google Scholar
[44]
Ahmadi, L.,Ahmadi, E.; and Mohamadnia, Z., Demulsification of water in crude oil emulsions through magnetic nanocomposites decorated with poly (ionic liquid) s, Journal of Molecular Liquids (2022) 357 119162.
DOI: 10.1016/j.molliq.2022.119162
Google Scholar
[45]
Xie, H.,Wu, Z.,Wang, Z.,Lu, J.,Li, Y.,Cao, Y.; and Cheng, H., Facile fabrication of acid-resistant and hydrophobic Fe3O4@ SiO2@ C magnetic particles for valid oil-water separation application, Surfaces and Interfaces (2020) 21, 100651.
DOI: 10.1016/j.surfin.2020.100651
Google Scholar
[46]
Qiao, K.,Tian, W.,Bai, J.,Wang, L.,Zhao, J.,Du, Z.; and Gong, X., Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: A review, Journal of the Taiwan Institute of Chemical Engineers (2019) 97 227-236.
DOI: 10.1016/j.jtice.2019.01.029
Google Scholar
[47]
Ali, N., Zhang, B., Zhang, H.,Zaman, W.,Li, X.,Li, W.; and Zhang, Q., Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2015) 472, 38-49.
DOI: 10.1016/j.colsurfa.2015.01.087
Google Scholar
[48]
Liang, C., He, X., Liu, Q.; and Xu, Z., Adsorption-based synthesis of magnetically responsive and interfacially active composite nanoparticles for dewatering of water-in-diluted bitumen emulsions, Energy & Fuels (2018) 32(8), 8078-8089.
DOI: 10.1021/acs.energyfuels.8b01187
Google Scholar
[49]
Guo, S., Wei, L.; and Zhang, L., Preparation and Characterization of Magnetic Carbon Nanospheres for the Demulsification of Water-in-Oil Emulsion, ACS omega, (2022)
DOI: 10.1021/acsomega.2c07050
Google Scholar
[50]
Farrokhi, F., Jafari Nasr, M. R., Rahimpour, M. R., Arjmand, M.; and Vaziri, S. A, An investigation on simultaneous effects of several parameters on the demulsification efficiency of various crude oils, Asia‐Pacific Journal of Chemical Engineering (2017) 12(6), 1012-1022.
DOI: 10.1002/apj.2142
Google Scholar
[51]
Umar, A. A., Saaid, I. M., Halilu, A., Sulaimon, A. A.; and Ahmed, A. A., Magnetic polyester bis-MPA dendron nanohybrid demulsifier can effectively break water-in-crude oil emulsions, Journal of Materials Research and Technology (2020) 9(6), 13411-13424.
DOI: 10.1016/j.jmrt.2020.09.074
Google Scholar
[52]
Dollah, A.,Bakar, N. A.,Othman, N. H.,Hussein, S. N. C. M.; and Japperi, N. S., Effect of Magnetic Graphene Oxide on Heavy Oil Demulsification, International Journal of Integrated Engineering (2022) 14(5), 146-153.
DOI: 10.30880/ijie.2022.14.05.017
Google Scholar
[53]
Basher, N. A. and Ali, A. A., Hydrothermal Synthesis and Application of Nanocomposite as a Demulsifier in Crude Oil Processing, Egyptian Journal of Chemistry (2022) 65(6) 741-752.
DOI: 10.21608/ejchem.2022.117673.5304
Google Scholar
[54]
Lü, T.,Wu, Y.,Qi, D.,Sun, Y.,Zhang, D.; and Zhao, H., Fabrication of alkyl/amino siloxane-modified magnetic nanoparticles for simultaneous demulsification of O/W and W/O emulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2022) 648, 129295.
DOI: 10.1016/j.colsurfa.2022.129295
Google Scholar
[55]
He, X., Liu, Q.; and Xu, Z., Cellulose-coated magnetic Janus nanoparticles for dewatering of crude oil emulsions, Chemical Engineering Science (2021) 230, 116215.
DOI: 10.1016/j.ces.2020.116215
Google Scholar
[56]
Zaman, H., Shah, A. u. H. A., Ali, N.,Zhou, C.,Khan, A.,Ali, F.,Tian, C. T.; and Bilal, M., Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation, Journal of Environmental Management (2022) 319 115690.
DOI: 10.1016/j.jenvman.2022.115690
Google Scholar
[57]
Ahmadi, L.,Ahmadi, E.; and Mohamadnia, Z., Demulsification of water in crude oil emulsions through magnetic nanocomposites decorated with poly (ionic liquid) s, Journal of Molecular Liquids (2022) 357 119162.
DOI: 10.1016/j.molliq.2022.119162
Google Scholar
[58]
Farrokhi, F.,Jafari Nasr, M. R., Rahimpour, M. R., Arjmand, M.; and Vaziri, S. A., Application of a novel magnetic nanoparticle as demulsifier for dewatering in crude oil emulsion, Separation Science and Technology (2018) 53(3), 551-558
DOI: 10.1080/01496395.2017.1373676
Google Scholar
[59]
Singh, P., Srivastava, S.; and Singh, S. K., Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications, ACS Biomaterials Science & Engineering (2019) 5(10) 4882-4898.
DOI: 10.1021/acsbiomaterials.9b00464
Google Scholar
[60]
Javadian, S. and Sadrpoor, S. M., Demulsification of water in oil emulsion by surface modified SiO2 nanoparticle, Journal of Petroleum Science and Engineering (2020) 184, 106547.
DOI: 10.1016/j.petrol.2019.106547
Google Scholar
[61]
Yegya Raman, A. K. and Aichele, C. P., Demulsification of surfactant-stabilized water-in-oil (cyclohexane) emulsions using silica nanoparticles, Energy & Fuels (2018) 32(8), 8121-8130.
DOI: 10.1021/acs.energyfuels.8b01368
Google Scholar
[62]
Al-Anzi, B. S. and Siang, O. C., Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment, RSC advances (2017) 7(34), 20981-20994.
DOI: 10.1039/c7ra02501g
Google Scholar
[63]
Fang, S., Chen, T., Chen, B., Xiong, Y., Zhu, Y.; and Duan, M., Graphene oxide at oil-water interfaces: Adsorption, assembly & demulsification, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2016) 511, 47-54.
DOI: 10.1016/j.colsurfa.2016.09.058
Google Scholar
[64]
Liu, J., Li, X., Jia, W., Ding, M., Zhang, Y.; and Ren, S., Separation of Emulsified Oil from Oily Wastewater by Functionalized Multiwalled Carbon Nanotubes, Journal of Dispersion Science and Technology (2016) 37(9), 1294-1302
DOI: 10.1080/01932691.2015.1090320
Google Scholar
[65]
Zhang, F., Liu, G., Ma, J., Ouyang, J., Yi, X.; and Su, H., Main challenges in demulsifier research and application, IOP Conference Series: Materials Science and Engineering (2017).
DOI: 10.1088/1757-899x/167/1/012068
Google Scholar
[66]
Shen, L.,Hu, W.,Lei, Z.,Peng, J.,Zhu, E.,Zhang, X.,Yang, M.,Feng, X.,Yang, Y.; and Mi, Y., Nanoscale silica-coated graphene oxide and its demulsifying performance in water-in-oil and oil-in-water emulsions, Environmental Science and Pollution Research (2021) 28(39) 55454-55464.
DOI: 10.1007/s11356-021-14888-1
Google Scholar
[67]
Ye, F., Jiang, X., Mi, Y., Kuang, J., Huang, Z., Yu, F.,Zhang, Z.; and Yuan, H., Preparation of oxidized carbon black grafted with nanoscale silica and its demulsification performance in water-in-oil emulsion, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2019) 582, 123878.
DOI: 10.1016/j.colsurfa.2019.123878
Google Scholar
[68]
Yuan, H., Zhang, Z., Mi, Y.,Ye, F., Liu, W., Kuan, J.,Jiang, X.; and Luo, Y., Demulsification of water-containing crude oil driven by environmentally friendly SiO2@ CS composite materials, Energy & Fuels (2020) 34(7) 8316-8324.
DOI: 10.1021/acs.energyfuels.0c01660
Google Scholar
[69]
Huang, Z.,Li, P.,Luo, X., Jiang, X.,Liu, L.,Ye, F.,Kuang, J.,Luo, Y.; and Mi, Y., Synthesis of a novel environmentally friendly and interfacially active CNTs/SiO2 demulsifier for W/O crude oil emulsion separation, Energy & Fuels (2019) 33(8) 7166-7175.
DOI: 10.1021/acs.energyfuels.9b01217
Google Scholar
[70]
Shen, L., Ai, G., Ao, Y., Zeng, G., Yang, Y., Feng, X., Zhang, Z., Yuan, H., Ye, F.; and Mi, Y., Treatment of water-in-crude oil emulsion driven by SiO2 modified rice bran. Colloids and Surfaces A: Physicochemical and Engineering Aspects (2021) 631 127708.
DOI: 10.1016/j.colsurfa.2021.127708
Google Scholar
[71]
Ye, F., Zhang, Z.,Ao, Y.,Li, B.,Chen, L.,Shen, L.,Feng, X.,Yang, Y.,Yuan, H.; and Mi, Y., Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks, Chemosphere (2022) 288, 132656.
DOI: 10.1016/j.chemosphere.2021.132656
Google Scholar
[72]
Yang, Y.,Li, B.,Peng, J.,Lei, Z.,Zhu, E.,Zhang, X.,Feng, X.; and Mi, Y., The demulsification of crude oil emulsion driven by a natural lotus leaf grafted with nano-SiO2, Journal Environmental Chemical Engineering (2021) 9(4) 105586.
DOI: 10.1016/j.jece.2021.105586
Google Scholar
[73]
Yuan, H.,Huang, Z.,Shen, L.,Xu, J.,Feng, X.,Yang, Y.,Zhang, Z.,Luo, Y.,Yan, X.; and Mi, Y., Demulsification of crude oil emulsion using carbonized cotton/silica composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2021) 617 126421.
DOI: 10.1016/j.colsurfa.2021.126421
Google Scholar
[74]
Basher, N. A. and Abdulkhabeer, A., Synthesis of novel demulsifier nano-materials and their application in the oil industry, Materials today: proceedings (2022) 49 2842-2850.
DOI: 10.1016/j.matpr.2021.10.069
Google Scholar
[75]
Poteau, S.,Argillier, J.-F.,Langevin, D.,Pincet, F.; and Perez, E., Influence of pH on Stability and Dynamic Properties of Asphaltenes and Other Amphiphilic Molecules at the Oil−Water Interface, Energy & Fuels (2005) 19(4) 1337-1341
DOI: 10.1021/ef0497560
Google Scholar
[76]
Chen, Y., Tian, G., Liang, H.; and Liang, Y., Synthesis of magnetically responsive hyperbranched polyamidoamine based on the graphene oxide: application as demulsifier for oil‐in‐water emulsions, International Journal of Energy Research (2019) 43(9) 4756-4765.
DOI: 10.1002/er.4614
Google Scholar
[77]
Fortuny, M.,Oliveira, C. B. Z.,Melo, R. L. F. V.,Nele, M.,Coutinho, R. C. C.; and Santos, A. F., Effect of Salinity, Temperature, Water Content, and pH on the Microwave Demulsification of Crude Oil Emulsions, Energy & Fuels (2007) 21(3), 1358-1364.
DOI: 10.1021/ef0603885
Google Scholar
[78]
Geng, J.,Shi, X.,Han, P.,Wu, Y.,Bai, B.,Zhan, J.; and Han, X., Experimental Study on Charged Nanogels for Interfacial Tension Reduction and Emulsion Stabilization at Various Salinities and Oil Types, Energy & Fuels (2020) 34(12) 15894-15904.
DOI: 10.1021/acs.energyfuels.0c02591
Google Scholar
[79]
Liang, J.,Du, N.,Song, S.; and Hou, W., Magnetic demulsification of diluted crude oil-in-water nanoemulsions using oleic acid-coated magnetite nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2015) 466 197-202.
DOI: 10.1016/j.colsurfa.2014.11.050
Google Scholar
[80]
Lü, T., Qi, D., Zhang, D., Lin, S., Mao, Y.; and Zhao, H., Facile synthesis of N-(aminoethyl)-aminopropyl functionalized core-shell magnetic nanoparticles for emulsified oil-water separation, Journal of Alloys and Compounds (2018) 769, 858-865.
DOI: 10.1016/j.jallcom.2018.08.071
Google Scholar