Dehydration of Crude Oil Emulsion Using Nanoparticles as Demulsifier: A Review

Article Preview

Abstract:

One of the emerging alternatives to surfactants in crude oil dehydration is the application of nanoparticles. This review aims to assess the recent progress in the application of nanoparticles for the chemical demulsification of water-in-oil and to provide knowledge gaps for future research. This review covers the nanomodification of commercial demulsifiers and the demulsification performance of magnetic and nonmagnetic nanoparticles, along with their possible mechanisms and factors that affect their dehydration efficiency. The addition of nanoparticles improves the dehydration performance of commercial demulsifiers by improving their wettability and interfacial activity. The advantage of magnetic nanoparticles is their rapid response to a magnetic field, which allows them to be recoverable. For nonmagnetic nanoparticles, their advantage is their environmental friendliness, biocompatibility, and cost-effectiveness. Nanoparticles were able to dehydrate emulsions by modifying the interfacial properties and possibly through adsorption of asphaltenes. Factors such as dosage, temperature, pH, salinity, water content, surfactant concentration; and nanoparticle wettability, and surface chemistry significantly affect the demulsification performance. The application of nanoparticles as demulsifiers is still on a laboratory scale. However, studies on toxicity and proper handling may increase interest for field application. Studies are encouraged on the exact mechanism on the reduction of interfacial tension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-95

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shehzad, F., Hussein, I. A., Kamal, M. S., Ahmad, W., Sultan, A. S.; and Nasser, M. S., Polymeric surfactants and emerging alternatives used in the demulsification of produced water: A review, Polymer Reviews (2018) 58(1) 63-101.

DOI: 10.1080/15583724.2017.1340308

Google Scholar

[2] Abdulredha, M. M., Siti Aslina, H.; and Luqman, C. A.,Overview on petroleum emulsions, formation, influence and demulsification treatment techniques, Arabian Journal of Chemistry (2020) 13(1), 3403-3428

DOI: 10.1016/j.arabjc.2018.11.014

Google Scholar

[3] Zolfaghari, R., Fakhru'l-Razi, A.,Abdullah, L. C.,Elnashaie, S. S. E. H.; and Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Separation and Purification Technology (2016) 170, 377-407.

DOI: 10.1016/j.seppur.2016.06.026

Google Scholar

[4] Chang, C.-C.,Nowbahar, A.,Mansard, V.,Williams, I.,Mecca, J.,Schmitt, A. K.,Kalantar, T. H., Kuo, T.-C.; and Squires, T. M., Interfacial rheology and heterogeneity of aging asphaltene layers at the water–oil interface, Langmuir (2018) 34(19), 5409-5415.

DOI: 10.1021/acs.langmuir.8b00176

Google Scholar

[5] Delgado-Linares, J. G.,Pereira, J. C.,Rondón, M.,Bullon, J.; and Salager, J.-L., Breaking of water-in-crude oil emulsions. 6. Estimating the demulsifier performance at optimum formulation from both the required dose and the attained instability, Energy & Fuels (2016) 30(7), 5483-5491.

DOI: 10.1021/acs.energyfuels.6b00666

Google Scholar

[6] Li, Z.,Yin, S.,Tan, G.,Zhao, S.,Shi, Z.,Jing, B.,Zhai, L.; and Tan, Y., Synthesis and properties of novel branched polyether as demulsifiers for polymer flooding, Colloid and Polymer Science (2016) 294, 1943-1958.

DOI: 10.1007/s00396-016-3956-x

Google Scholar

[7] Al-Sabagh, A. M.,Kandile, N. G.; and Noor El-Din, M. R., Functions of demulsifiers in the petroleum industry, Separation Science and Technology (2011) 46(7), 1144-1163.

DOI: 10.1080/01496395.2010.550595

Google Scholar

[8] Fan, G., Lyu, R., Gao, X., Liang, C.; and Wang, C., MPEG grafted quaternized carboxymethyl chitosan for demulsification of crude oil emulsions, Journal of Applied Polymer Science (2018) 135(7), 45867.

DOI: 10.1002/app.45867

Google Scholar

[9] Liu, J., Zhang, Y., Peng, K., Zhao, X., Xiong, Y.; and Huang, X., A review of the interfacial stability mechanism of aging oily sludge: Heavy components, inorganic particles, and their synergism, Journal of Hazardous Materials (2021) 415, 125624.

DOI: 10.1016/j.jhazmat.2021.125624

Google Scholar

[10] Roostaie, T.,Farsi, M., Rahimpour, M. R.; and Biniaz, P., Performance of biodegradable cellulose based agents for demulsification of crude oil: Dehydration capacity and rate, Separation and Purification Technology (2017) 179, 291-296.

DOI: 10.1016/j.seppur.2017.01.036

Google Scholar

[11] Issaka, S. A.,Nour, A. H.; and Yunus, R. M., Review on the fundamental aspects of petroleum oil emulsions and techniques of demulsification, Journal of Petroleum & Environmental Biotechnology (2015) 6(2), 1.

DOI: 10.4172/2157-7463.1000214

Google Scholar

[12] Yi, M.,Huang, J.; and Wang, L., Research on crude oil demulsification using the combined method of ultrasound and chemical demulsifier, Journal of Chemistry (2017).

DOI: 10.1155/2017/9147926

Google Scholar

[13] Saad, M., Kamil, M., Abdurahman, N., Yunus, R. M.; and Awad, O. I., An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions, Processes (2019) 7(7), 470.

DOI: 10.3390/pr7070470

Google Scholar

[14] Hamedi, H.,Rezaei, N.; and Zendehboudi, S., A comprehensive review on demulsification using functionalized magnetic nanoparticles, Journal of Cleaner Production (2022) 134868.

DOI: 10.1016/j.jclepro.2022.134868

Google Scholar

[15] Xu, H., Jia, W., Ren, S.; and Wang, J., Novel and recyclable demulsifier of expanded perlite grafted by magnetic nanoparticles for oil separation from emulsified oil wastewaters, Chemical Engineering Journal (2018) 337, 10-18.

DOI: 10.1016/j.cej.2017.12.084

Google Scholar

[16] Daniel-David, D.,Le Follotec, A.,Pezron, I.,Dalmazzone, C.,Noik, C.,Barre, L.; and Komunjer, L., Destabilisation of water-in-crude oil emulsions by silicone copolymer demulsifiers, Oil & Gas Science and Technology-Revue de l'IFP (2008) 63(1), 165-173.

DOI: 10.2516/ogst:2008002

Google Scholar

[17] Pradilla, D.,Ramírez, J.,Zanetti, F.; and Álvarez, O., Demulsifier performance and dehydration mechanisms in colombian heavy crude oil emulsions, Energy & Fuels (2017) 31(10),10369-10377.

DOI: 10.1021/acs.energyfuels.7b01021

Google Scholar

[18] Wang, D.,Yang, D.,Huang, C.,Huang, Y.,Yang, D.,Zhang, H.,Liu, Q.,Tang, T.,El-Din, M. G.; and Kemppi, T., Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review, Fuel (2021) 286, 119390.

DOI: 10.1016/j.fuel.2020.119390

Google Scholar

[19] Kokal, S., Crude-oil emulsions: A state-of-the-art review, SPE Production & facilities (2005) 20(01), 5-13.

DOI: 10.2118/77497-pa

Google Scholar

[20] Zhang, Y., Gao, B., Lu, L., Yue, Q., Wang, Q.; and Jia, Y., Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor–coagulation process, Journal of Petroleum Science and Engineering (2010) 74(1-2), 14-19.

DOI: 10.1016/j.petrol.2010.08.001

Google Scholar

[21] Zhang, Z.,Ai, G.,Zeng, G.,Yuan, H.,Yang, Y.,Shen, L.,Feng, X.,Ye, F.; and Mi, Y, Demulsification of water-in-crude oil emulsion driven by a three-branch structure demulsifier, Journal of Molecular Liquids (2022) 354, 118822.

DOI: 10.1016/j.molliq.2022.118822

Google Scholar

[22] Peng, J.,Liu, Q.,Xu, Z.; and Masliyah, J., Novel magnetic demulsifier for water removal from diluted bitumen emulsion, Energy & fuels (2012) 26(5), 2705-2710.

DOI: 10.1021/ef2014259

Google Scholar

[23] Farooq, U.,Patil, A.,Panjwani, B.; and Simonsen, G., Review on application of nanotechnology for asphaltene adsorption, crude oil demulsification, and produced water treatment, Energy & Fuels (2021) 35(23), 19191-19210.

DOI: 10.1021/acs.energyfuels.1c01990

Google Scholar

[24] Mu, Y., Liu, J.,Liu, J.; and Ren, S., Preparation and demulsification performance of modified attapulgite nanoparticle demulsifier, Fuel (2022) 313, 123038.

DOI: 10.1016/j.fuel.2021.123038

Google Scholar

[25] Wang, N.,Fuh, J. Y. H.,Dheen, S. T.; and Senthil Kumar, A., Synthesis methods of functionalized nanoparticles: a review, Bio-Design and Manufacturing (2021) 4(2), 379-404.

DOI: 10.1007/s42242-020-00106-3

Google Scholar

[26] Nassar, N. N.,Hassan, A.; and Vitale, G., Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles, Applied Catalysis A: General (2014) 484, 161-171.

DOI: 10.1016/j.apcata.2014.07.017

Google Scholar

[27] He, X.,Liang, C.,Liu, Q.; and Xu, Z., Magnetically responsive Janus nanoparticles synthesized using cellulosic materials for enhanced phase separation in oily wastewaters and water-in-crude oil emulsions, Chemical Engineering Journal (2019) 378, 122045.

DOI: 10.1016/j.cej.2019.122045

Google Scholar

[28] Hassan, S. A., Abdalla, B. K.; and Mustafa, M. A., Addition of silica nano-particles for the enhancement of crude oil demulsification process, Petroleum Science and Technology (2019) 37(13), 1603-1611.

DOI: 10.1080/10916466.2019.1602634

Google Scholar

[29] Nikkhah, M., Tohidian, T.,Rahimpour, M. R.; and Jahanmiri, A., Efficient demulsification of water-in-oil emulsion by a novel nano-titania modified chemical demulsifier, Chemical Engineering Research and Design (2015) 94, 164-172.

DOI: 10.1016/j.cherd.2014.07.021

Google Scholar

[30] Zhou, J., Sui, H., Ma, J.,Li, X.,Al-Shiaani, N. H.; and He, L., Fast demulsification of oil-water emulsions at room temperature by functionalized magnetic nanoparticles, Separation and Purification Technology (2021) 274, 118967.

DOI: 10.1016/j.seppur.2021.118967

Google Scholar

[31] Zhou, J., Zhang, X., He, L.,Sui, H.; and Li, X., Nano-modification of carboxylated polyether for enhanced room temperature demulsification of oil-water emulsions: Synthesis, performance and mechanisms, Journal of Hazardous Materials (2022) 439, 129654

DOI: 10.1016/j.jhazmat.2022.129654

Google Scholar

[32] Fang-Hui, W. and Hong, Z., The application and research of dispersing in situ nano-SiO2 in polyether demulsifier TA1031, Journal of dispersion science and technology (2008) 29(8), 1081-1084.

DOI: 10.1080/01932690701815903

Google Scholar

[33] Javadian, S.,Bahri, M.,Sadrpoor, S. M.,Rezaei, Z.; and Kakemam, J., Structure effect in the demulsification performance of cationic surfactants, Journal of Petroleum Science and Engineering (2022) 218, 110895.

DOI: 10.1016/j.petrol.2022.110895

Google Scholar

[34] Gandomkar, G., Bekhradinassab, E., Sabbaghi, S.; and Zerafat, M., Improvement of chemical demulsifier performance using silica nanoparticles, International Journal of Chemical and Molecular Engineering (2016) 9(4), 585-588.

Google Scholar

[35] Hasanshahi, Z.,Parvasi, P.,Zerafat, M. M.; and Sabbaghi, S., Experimental Investigation of Fe3O4-Chitosan Nanocomposite as a Nano-Demulsifier for Water in Crude Oil Separation, Journal of Nanoanalysis (2021) 8(1), 41-51.

Google Scholar

[36] Adewunmi, A. A.,Kamal, M. S.; and Solling, T. I., Application of magnetic nanoparticles in demulsification: A review on synthesis, performance, recyclability, and challenges, Journal of Petroleum Science and Engineering (2021) 196, 107680.

DOI: 10.1016/j.petrol.2020.107680

Google Scholar

[37] Azizi, N. and Bashipour, F., Demulsification of water-in-oil emulsions applying Fe3O4 magnetic nanoparticles for demulsifier modification: Experimental optimization via response surface methodology, Journal of Petroleum Science and Engineering (2022) 216, 110806.

DOI: 10.1016/j.petrol.2022.110806

Google Scholar

[38] Li, S.,Li, N.,Yang, S.,Liu, F.; and Zhou, J., The synthesis of a novel magnetic demulsifier and its application for the demulsification of oil-charged industrial wastewaters, Journal of Materials Chemistry A (2014) 2(1), 94-99.

DOI: 10.1039/c3ta12952g

Google Scholar

[39] Lü, T., Zhang, S., Qi, D., Zhang, D.; and Zhao, H., Thermosensitive poly (N-isopropylacrylamide)-grafted magnetic nanoparticles for efficient treatment of emulsified oily wastewater, Journal of Alloys and Compounds (2016) 688, 513-520.

DOI: 10.1016/j.jallcom.2016.07.262

Google Scholar

[40] Simonsen, G., Strand, M.; and Øye, G., Potential applications of magnetic nanoparticles within separation in the petroleum industry, Journal of Petroleum Science and Engineering (2018) 165, 488-495

DOI: 10.1016/j.petrol.2018.02.048

Google Scholar

[41] Sun, N., Sun, H., Hu, J., Xu, S., Shen, L., & Ma, Y. Using a New Fe3O4@ CPAM Magnetic Flocculant and Microwave to Demulsify Heavy Oil-in-Water Emulsions. ACS omega (2024) 9(8), 9202-9215.

DOI: 10.1021/acsomega.3c08238

Google Scholar

[42] Fossati, A., Alho, M. M.; and Jacobo, S. E., Covalent functionalized magnetic nanoparticles for crude oil recovery, Materials Chemistry and Physics (2019) 238 121910.

DOI: 10.1016/j.matchemphys.2019.121910

Google Scholar

[43] Xu, H., Wang, J.; and Ren, S., Removal of Oil from a Crude Oil-in-Water Emulsion by a Magnetically Recyclable Diatomite Demulsifier, Energy & Fuels (2019) 33(11), 11574-11583

DOI: 10.1021/acs.energyfuels.9b02440

Google Scholar

[44] Ahmadi, L.,Ahmadi, E.; and Mohamadnia, Z., Demulsification of water in crude oil emulsions through magnetic nanocomposites decorated with poly (ionic liquid) s, Journal of Molecular Liquids (2022) 357 119162.

DOI: 10.1016/j.molliq.2022.119162

Google Scholar

[45] Xie, H.,Wu, Z.,Wang, Z.,Lu, J.,Li, Y.,Cao, Y.; and Cheng, H., Facile fabrication of acid-resistant and hydrophobic Fe3O4@ SiO2@ C magnetic particles for valid oil-water separation application, Surfaces and Interfaces (2020) 21, 100651.

DOI: 10.1016/j.surfin.2020.100651

Google Scholar

[46] Qiao, K.,Tian, W.,Bai, J.,Wang, L.,Zhao, J.,Du, Z.; and Gong, X., Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: A review, Journal of the Taiwan Institute of Chemical Engineers (2019) 97 227-236.

DOI: 10.1016/j.jtice.2019.01.029

Google Scholar

[47] Ali, N., Zhang, B., Zhang, H.,Zaman, W.,Li, X.,Li, W.; and Zhang, Q., Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2015) 472, 38-49.

DOI: 10.1016/j.colsurfa.2015.01.087

Google Scholar

[48] Liang, C., He, X., Liu, Q.; and Xu, Z., Adsorption-based synthesis of magnetically responsive and interfacially active composite nanoparticles for dewatering of water-in-diluted bitumen emulsions, Energy & Fuels (2018) 32(8), 8078-8089.

DOI: 10.1021/acs.energyfuels.8b01187

Google Scholar

[49] Guo, S., Wei, L.; and Zhang, L., Preparation and Characterization of Magnetic Carbon Nanospheres for the Demulsification of Water-in-Oil Emulsion, ACS omega, (2022)

DOI: 10.1021/acsomega.2c07050

Google Scholar

[50] Farrokhi, F., Jafari Nasr, M. R., Rahimpour, M. R., Arjmand, M.; and Vaziri, S. A, An investigation on simultaneous effects of several parameters on the demulsification efficiency of various crude oils, Asia‐Pacific Journal of Chemical Engineering (2017) 12(6), 1012-1022.

DOI: 10.1002/apj.2142

Google Scholar

[51] Umar, A. A., Saaid, I. M., Halilu, A., Sulaimon, A. A.; and Ahmed, A. A., Magnetic polyester bis-MPA dendron nanohybrid demulsifier can effectively break water-in-crude oil emulsions, Journal of Materials Research and Technology (2020) 9(6), 13411-13424.

DOI: 10.1016/j.jmrt.2020.09.074

Google Scholar

[52] Dollah, A.,Bakar, N. A.,Othman, N. H.,Hussein, S. N. C. M.; and Japperi, N. S., Effect of Magnetic Graphene Oxide on Heavy Oil Demulsification, International Journal of Integrated Engineering (2022) 14(5), 146-153.

DOI: 10.30880/ijie.2022.14.05.017

Google Scholar

[53] Basher, N. A. and Ali, A. A., Hydrothermal Synthesis and Application of Nanocomposite as a Demulsifier in Crude Oil Processing, Egyptian Journal of Chemistry (2022) 65(6) 741-752.

DOI: 10.21608/ejchem.2022.117673.5304

Google Scholar

[54] Lü, T.,Wu, Y.,Qi, D.,Sun, Y.,Zhang, D.; and Zhao, H., Fabrication of alkyl/amino siloxane-modified magnetic nanoparticles for simultaneous demulsification of O/W and W/O emulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2022) 648, 129295.

DOI: 10.1016/j.colsurfa.2022.129295

Google Scholar

[55] He, X., Liu, Q.; and Xu, Z., Cellulose-coated magnetic Janus nanoparticles for dewatering of crude oil emulsions, Chemical Engineering Science (2021) 230, 116215.

DOI: 10.1016/j.ces.2020.116215

Google Scholar

[56] Zaman, H., Shah, A. u. H. A., Ali, N.,Zhou, C.,Khan, A.,Ali, F.,Tian, C. T.; and Bilal, M., Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation, Journal of Environmental Management (2022) 319 115690.

DOI: 10.1016/j.jenvman.2022.115690

Google Scholar

[57] Ahmadi, L.,Ahmadi, E.; and Mohamadnia, Z., Demulsification of water in crude oil emulsions through magnetic nanocomposites decorated with poly (ionic liquid) s, Journal of Molecular Liquids (2022) 357 119162.

DOI: 10.1016/j.molliq.2022.119162

Google Scholar

[58] Farrokhi, F.,Jafari Nasr, M. R., Rahimpour, M. R., Arjmand, M.; and Vaziri, S. A., Application of a novel magnetic nanoparticle as demulsifier for dewatering in crude oil emulsion, Separation Science and Technology (2018) 53(3), 551-558

DOI: 10.1080/01496395.2017.1373676

Google Scholar

[59] Singh, P., Srivastava, S.; and Singh, S. K., Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications, ACS Biomaterials Science & Engineering (2019) 5(10) 4882-4898.

DOI: 10.1021/acsbiomaterials.9b00464

Google Scholar

[60] Javadian, S. and Sadrpoor, S. M., Demulsification of water in oil emulsion by surface modified SiO2 nanoparticle, Journal of Petroleum Science and Engineering (2020) 184, 106547.

DOI: 10.1016/j.petrol.2019.106547

Google Scholar

[61] Yegya Raman, A. K. and Aichele, C. P., Demulsification of surfactant-stabilized water-in-oil (cyclohexane) emulsions using silica nanoparticles, Energy & Fuels (2018) 32(8), 8121-8130.

DOI: 10.1021/acs.energyfuels.8b01368

Google Scholar

[62] Al-Anzi, B. S. and Siang, O. C., Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment, RSC advances (2017) 7(34), 20981-20994.

DOI: 10.1039/c7ra02501g

Google Scholar

[63] Fang, S., Chen, T., Chen, B., Xiong, Y., Zhu, Y.; and Duan, M., Graphene oxide at oil-water interfaces: Adsorption, assembly & demulsification, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2016) 511, 47-54.

DOI: 10.1016/j.colsurfa.2016.09.058

Google Scholar

[64] Liu, J., Li, X., Jia, W., Ding, M., Zhang, Y.; and Ren, S., Separation of Emulsified Oil from Oily Wastewater by Functionalized Multiwalled Carbon Nanotubes, Journal of Dispersion Science and Technology (2016) 37(9), 1294-1302

DOI: 10.1080/01932691.2015.1090320

Google Scholar

[65] Zhang, F., Liu, G., Ma, J., Ouyang, J., Yi, X.; and Su, H., Main challenges in demulsifier research and application, IOP Conference Series: Materials Science and Engineering (2017).

DOI: 10.1088/1757-899x/167/1/012068

Google Scholar

[66] Shen, L.,Hu, W.,Lei, Z.,Peng, J.,Zhu, E.,Zhang, X.,Yang, M.,Feng, X.,Yang, Y.; and Mi, Y., Nanoscale silica-coated graphene oxide and its demulsifying performance in water-in-oil and oil-in-water emulsions, Environmental Science and Pollution Research (2021) 28(39) 55454-55464.

DOI: 10.1007/s11356-021-14888-1

Google Scholar

[67] Ye, F., Jiang, X., Mi, Y., Kuang, J., Huang, Z., Yu, F.,Zhang, Z.; and Yuan, H., Preparation of oxidized carbon black grafted with nanoscale silica and its demulsification performance in water-in-oil emulsion, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2019) 582, 123878.

DOI: 10.1016/j.colsurfa.2019.123878

Google Scholar

[68] Yuan, H., Zhang, Z., Mi, Y.,Ye, F., Liu, W., Kuan, J.,Jiang, X.; and Luo, Y., Demulsification of water-containing crude oil driven by environmentally friendly SiO2@ CS composite materials, Energy & Fuels (2020) 34(7) 8316-8324.

DOI: 10.1021/acs.energyfuels.0c01660

Google Scholar

[69] Huang, Z.,Li, P.,Luo, X., Jiang, X.,Liu, L.,Ye, F.,Kuang, J.,Luo, Y.; and Mi, Y., Synthesis of a novel environmentally friendly and interfacially active CNTs/SiO2 demulsifier for W/O crude oil emulsion separation, Energy & Fuels (2019) 33(8) 7166-7175.

DOI: 10.1021/acs.energyfuels.9b01217

Google Scholar

[70] Shen, L., Ai, G., Ao, Y., Zeng, G., Yang, Y., Feng, X., Zhang, Z., Yuan, H., Ye, F.; and Mi, Y., Treatment of water-in-crude oil emulsion driven by SiO2 modified rice bran. Colloids and Surfaces A: Physicochemical and Engineering Aspects (2021) 631 127708.

DOI: 10.1016/j.colsurfa.2021.127708

Google Scholar

[71] Ye, F., Zhang, Z.,Ao, Y.,Li, B.,Chen, L.,Shen, L.,Feng, X.,Yang, Y.,Yuan, H.; and Mi, Y., Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks, Chemosphere (2022) 288, 132656.

DOI: 10.1016/j.chemosphere.2021.132656

Google Scholar

[72] Yang, Y.,Li, B.,Peng, J.,Lei, Z.,Zhu, E.,Zhang, X.,Feng, X.; and Mi, Y., The demulsification of crude oil emulsion driven by a natural lotus leaf grafted with nano-SiO2, Journal Environmental Chemical Engineering (2021) 9(4) 105586.

DOI: 10.1016/j.jece.2021.105586

Google Scholar

[73] Yuan, H.,Huang, Z.,Shen, L.,Xu, J.,Feng, X.,Yang, Y.,Zhang, Z.,Luo, Y.,Yan, X.; and Mi, Y., Demulsification of crude oil emulsion using carbonized cotton/silica composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2021) 617 126421.

DOI: 10.1016/j.colsurfa.2021.126421

Google Scholar

[74] Basher, N. A. and Abdulkhabeer, A., Synthesis of novel demulsifier nano-materials and their application in the oil industry, Materials today: proceedings (2022) 49 2842-2850.

DOI: 10.1016/j.matpr.2021.10.069

Google Scholar

[75] Poteau, S.,Argillier, J.-F.,Langevin, D.,Pincet, F.; and Perez, E., Influence of pH on Stability and Dynamic Properties of Asphaltenes and Other Amphiphilic Molecules at the Oil−Water Interface, Energy & Fuels (2005) 19(4) 1337-1341

DOI: 10.1021/ef0497560

Google Scholar

[76] Chen, Y., Tian, G., Liang, H.; and Liang, Y., Synthesis of magnetically responsive hyperbranched polyamidoamine based on the graphene oxide: application as demulsifier for oil‐in‐water emulsions, International Journal of Energy Research (2019) 43(9) 4756-4765.

DOI: 10.1002/er.4614

Google Scholar

[77] Fortuny, M.,Oliveira, C. B. Z.,Melo, R. L. F. V.,Nele, M.,Coutinho, R. C. C.; and Santos, A. F., Effect of Salinity, Temperature, Water Content, and pH on the Microwave Demulsification of Crude Oil Emulsions, Energy & Fuels (2007) 21(3), 1358-1364.

DOI: 10.1021/ef0603885

Google Scholar

[78] Geng, J.,Shi, X.,Han, P.,Wu, Y.,Bai, B.,Zhan, J.; and Han, X., Experimental Study on Charged Nanogels for Interfacial Tension Reduction and Emulsion Stabilization at Various Salinities and Oil Types, Energy & Fuels (2020) 34(12) 15894-15904.

DOI: 10.1021/acs.energyfuels.0c02591

Google Scholar

[79] Liang, J.,Du, N.,Song, S.; and Hou, W., Magnetic demulsification of diluted crude oil-in-water nanoemulsions using oleic acid-coated magnetite nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2015) 466 197-202.

DOI: 10.1016/j.colsurfa.2014.11.050

Google Scholar

[80] Lü, T., Qi, D., Zhang, D., Lin, S., Mao, Y.; and Zhao, H., Facile synthesis of N-(aminoethyl)-aminopropyl functionalized core-shell magnetic nanoparticles for emulsified oil-water separation, Journal of Alloys and Compounds (2018) 769, 858-865.

DOI: 10.1016/j.jallcom.2018.08.071

Google Scholar