[1]
I. Afaynou, H. Faraji, K. Choukairy, A. Arshad, and M. Arıcı, "Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances," International Communications in Heat and Mass Transfer, vol. 143, Apr. 2023.
DOI: 10.1016/j.icheatmasstransfer.2023.106690
Google Scholar
[2]
I. Afaynou, H. Faraji, K. Choukairy, M. Arıcı, and K. Khallaki, "Heat transfer improvement of phase change materials by metal foams and nanoparticles for efficient electronic thermal management: A comprehensive study," Int J Heat Mass Transf, vol. 227, Aug. 2024.
DOI: 10.1016/j.ijheatmasstransfer.2024.125534
Google Scholar
[3]
R. Baby and C. Balaji, "Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling," Int J Heat Mass Transf, vol. 55, no. 5–6, p.1642–1649, Feb. 2012.
DOI: 10.1016/j.ijheatmasstransfer.2011.11.020
Google Scholar
[4]
S. Feng, Y. Zhang, M. Shi, T. Wen, and T. J. Lu, "Unidirectional freezing of phase change materials saturated in open-cell metal foams," Appl Therm Eng, vol. 88, p.315–321, Sep. 2015.
DOI: 10.1016/J.APPLTHERMALENG.2014.09.055
Google Scholar
[5]
X. Xiao, P. Zhang, and M. Li, "Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage," International Journal of Thermal Sciences, vol. 81, no. 1, p.94–105, 2014.
DOI: 10.1016/j.ijthermalsci.2014.03.006
Google Scholar
[6]
C. Ding, Y. Shan, and Q. Nie, "Thermal performance of phase change material–based heat sink with hybrid fin-metal foam structure under hypergravity conditions," Int J Energy Res, vol. 46, no. 5, p.5811–5827, Apr. 2022.
DOI: 10.1002/er.7524
Google Scholar
[7]
J. Xie, H. M. Lee, and J. Xiang, "Numerical study of thermally optimized metal structures in a Phase Change Material (PCM) enclosure," Appl Therm Eng, vol. 148, p.825–837, Feb. 2019.
DOI: 10.1016/j.applthermaleng.2018.11.111
Google Scholar
[8]
J. Xie, K. F. Choo, J. Xiang, and H. M. Lee, "Characterization of natural convection in a PCM-based heat sink with novel conductive structures," International Communications in Heat and Mass Transfer, vol. 108, Nov. 2019.
DOI: 10.1016/j.icheatmasstransfer.2019.104306
Google Scholar
[9]
P. T. Sardari, H. I. Mohammed, D. Giddings, G. S. walker, M. Gillott, and D. Grant, "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, vol. 189, Dec. 2019.
DOI: 10.1016/j.energy.2019.116108
Google Scholar
[10]
T. ur Rehman and H. M. Ali, "Experimental study on the thermal behavior of RT-35HC paraffin within copper and Iron-Nickel open cell foams: Energy storage for thermal management of electronics," Int J Heat Mass Transf, vol. 146, p.118852, 2020.
DOI: 10.1016/j.ijheatmasstransfer.2019.118852
Google Scholar
[11]
Z. G. Qu, W. Q. Li, J. L. Wang, and W. Q. Tao, "Passive thermal management using metal foam saturated with phase change material in a heat sink," International Communications in Heat and Mass Transfer, vol. 39, no. 10, p.1546–1549, Dec. 2012.
DOI: 10.1016/j.icheatmasstransfer.2012.09.001
Google Scholar
[12]
A. M. Elshaer, A. M. A. Soliman, M. Kassab, S. Mori, and A. A. Hawwash, "Experimental investigations on copper foam/PCM composite-based thermal control hardware (TCH) using foam samples with different pore sizes under intermittent thermal conditions," J Energy Storage, vol. 72, p.108320, Nov. 2023.
DOI: 10.1016/J.EST.2023.108320
Google Scholar
[13]
W. G. Alshaer, S. A. Nada, M. A. Rady, C. Le Bot, and E. Palomo Del Barrio, "Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment," Energy Convers Manag, vol. 89, p.873–884, 2015.
DOI: 10.1016/j.enconman.2014.10.045
Google Scholar
[14]
B. Buonomo, D. Ercole, O. Manca, and S. Nardini, "Numerical Analysis on a Latent Thermal Energy Storage System with Phase Change Materials and Aluminum Foam," Heat Transfer Engineering, vol. 41, no. 12, p.1075–1084, Jul. 2020.
DOI: 10.1080/01457632.2019.1600875
Google Scholar
[15]
J. M. Mahdi and E. C. Nsofor, "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, vol. 126, p.501–512, 2017.
DOI: 10.1016/j.energy.2017.03.060
Google Scholar
[16]
S. B. Chen et al., "Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins," Case Studies in Thermal Engineering, vol. 25, Jun. 2021.
DOI: 10.1016/j.csite.2021.100939
Google Scholar
[17]
Z. Li, A. Shahsavar, A. A. A. A. Al-Rashed, and P. Talebizadehsardari, "Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system," Appl Therm Eng, vol. 167, Feb. 2020.
DOI: 10.1016/j.applthermaleng.2019.114777
Google Scholar
[18]
H. Faraji, M. Faraji, and M. El Alami, "Numerical Study of the Transient Melting Of Nano-Enhanced Phase Change Material," Heat Transfer Engineering, vol. 42, no. 2, p.120–139, Jan. 2021.
DOI: 10.1080/01457632.2019.1692496
Google Scholar
[19]
Z. Chen, D. Gao, and J. Shi, "Experimental and numerical study on melting of phase change materials in metal foams at pore scale," Int J Heat Mass Transf, vol. 72, p.646–655, May 2014.
DOI: 10.1016/j.ijheatmasstransfer.2014.01.003
Google Scholar
[20]
V. V Calmidi and R. L. M. Campmode, "Forced Convection in High Porosity Metal Foams," 2000. [Online]. Available: http://heattransfer.asmedigitalcollection.asme.org/.
Google Scholar
[21]
R. S. Vajjha and D. K. Das, "Experimental determination of thermal conductivity of three nanofluids and development of new correlations," Int J Heat Mass Transf, vol. 52, no. 21–22, p.4675–4682, Oct. 2009.
DOI: 10.1016/j.ijheatmasstransfer.2009.06.027
Google Scholar