Metal Foam and Nanoparticles Reinforced PCM for Electronic Components Thermal Management

Article Preview

Abstract:

This paper presents a numerical study on the passive cooling of an electronic component inside a rectangular enclosure filled with phase change material (PCM). The electronic component is centrally located on a substrate and generates volumetric heat. The study utilizes the enthalpy-porosity approach and the thermal equilibrium model. Its goal is to enhance the performance of the PCM by incorporating metal foam and nanoparticles. The investigation examines the impact of varying metal foam porosity while keeping the nanoparticle volume fraction constant. The results indicate that a lower porosity (0.85) significantly improves the thermal conductivity of the PCM by 3 times, which increases the cooling efficiency of the PCM-based heat sink. Meanwhile, nanoparticles have a negligible effect when metal foam is present.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-25

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Afaynou, H. Faraji, K. Choukairy, A. Arshad, and M. Arıcı, "Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances," International Communications in Heat and Mass Transfer, vol. 143, Apr. 2023.

DOI: 10.1016/j.icheatmasstransfer.2023.106690

Google Scholar

[2] I. Afaynou, H. Faraji, K. Choukairy, M. Arıcı, and K. Khallaki, "Heat transfer improvement of phase change materials by metal foams and nanoparticles for efficient electronic thermal management: A comprehensive study," Int J Heat Mass Transf, vol. 227, Aug. 2024.

DOI: 10.1016/j.ijheatmasstransfer.2024.125534

Google Scholar

[3] R. Baby and C. Balaji, "Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling," Int J Heat Mass Transf, vol. 55, no. 5–6, p.1642–1649, Feb. 2012.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.020

Google Scholar

[4] S. Feng, Y. Zhang, M. Shi, T. Wen, and T. J. Lu, "Unidirectional freezing of phase change materials saturated in open-cell metal foams," Appl Therm Eng, vol. 88, p.315–321, Sep. 2015.

DOI: 10.1016/J.APPLTHERMALENG.2014.09.055

Google Scholar

[5] X. Xiao, P. Zhang, and M. Li, "Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage," International Journal of Thermal Sciences, vol. 81, no. 1, p.94–105, 2014.

DOI: 10.1016/j.ijthermalsci.2014.03.006

Google Scholar

[6] C. Ding, Y. Shan, and Q. Nie, "Thermal performance of phase change material–based heat sink with hybrid fin-metal foam structure under hypergravity conditions," Int J Energy Res, vol. 46, no. 5, p.5811–5827, Apr. 2022.

DOI: 10.1002/er.7524

Google Scholar

[7] J. Xie, H. M. Lee, and J. Xiang, "Numerical study of thermally optimized metal structures in a Phase Change Material (PCM) enclosure," Appl Therm Eng, vol. 148, p.825–837, Feb. 2019.

DOI: 10.1016/j.applthermaleng.2018.11.111

Google Scholar

[8] J. Xie, K. F. Choo, J. Xiang, and H. M. Lee, "Characterization of natural convection in a PCM-based heat sink with novel conductive structures," International Communications in Heat and Mass Transfer, vol. 108, Nov. 2019.

DOI: 10.1016/j.icheatmasstransfer.2019.104306

Google Scholar

[9] P. T. Sardari, H. I. Mohammed, D. Giddings, G. S. walker, M. Gillott, and D. Grant, "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, vol. 189, Dec. 2019.

DOI: 10.1016/j.energy.2019.116108

Google Scholar

[10] T. ur Rehman and H. M. Ali, "Experimental study on the thermal behavior of RT-35HC paraffin within copper and Iron-Nickel open cell foams: Energy storage for thermal management of electronics," Int J Heat Mass Transf, vol. 146, p.118852, 2020.

DOI: 10.1016/j.ijheatmasstransfer.2019.118852

Google Scholar

[11] Z. G. Qu, W. Q. Li, J. L. Wang, and W. Q. Tao, "Passive thermal management using metal foam saturated with phase change material in a heat sink," International Communications in Heat and Mass Transfer, vol. 39, no. 10, p.1546–1549, Dec. 2012.

DOI: 10.1016/j.icheatmasstransfer.2012.09.001

Google Scholar

[12] A. M. Elshaer, A. M. A. Soliman, M. Kassab, S. Mori, and A. A. Hawwash, "Experimental investigations on copper foam/PCM composite-based thermal control hardware (TCH) using foam samples with different pore sizes under intermittent thermal conditions," J Energy Storage, vol. 72, p.108320, Nov. 2023.

DOI: 10.1016/J.EST.2023.108320

Google Scholar

[13] W. G. Alshaer, S. A. Nada, M. A. Rady, C. Le Bot, and E. Palomo Del Barrio, "Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment," Energy Convers Manag, vol. 89, p.873–884, 2015.

DOI: 10.1016/j.enconman.2014.10.045

Google Scholar

[14] B. Buonomo, D. Ercole, O. Manca, and S. Nardini, "Numerical Analysis on a Latent Thermal Energy Storage System with Phase Change Materials and Aluminum Foam," Heat Transfer Engineering, vol. 41, no. 12, p.1075–1084, Jul. 2020.

DOI: 10.1080/01457632.2019.1600875

Google Scholar

[15] J. M. Mahdi and E. C. Nsofor, "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, vol. 126, p.501–512, 2017.

DOI: 10.1016/j.energy.2017.03.060

Google Scholar

[16] S. B. Chen et al., "Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins," Case Studies in Thermal Engineering, vol. 25, Jun. 2021.

DOI: 10.1016/j.csite.2021.100939

Google Scholar

[17] Z. Li, A. Shahsavar, A. A. A. A. Al-Rashed, and P. Talebizadehsardari, "Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system," Appl Therm Eng, vol. 167, Feb. 2020.

DOI: 10.1016/j.applthermaleng.2019.114777

Google Scholar

[18] H. Faraji, M. Faraji, and M. El Alami, "Numerical Study of the Transient Melting Of Nano-Enhanced Phase Change Material," Heat Transfer Engineering, vol. 42, no. 2, p.120–139, Jan. 2021.

DOI: 10.1080/01457632.2019.1692496

Google Scholar

[19] Z. Chen, D. Gao, and J. Shi, "Experimental and numerical study on melting of phase change materials in metal foams at pore scale," Int J Heat Mass Transf, vol. 72, p.646–655, May 2014.

DOI: 10.1016/j.ijheatmasstransfer.2014.01.003

Google Scholar

[20] V. V Calmidi and R. L. M. Campmode, "Forced Convection in High Porosity Metal Foams," 2000. [Online]. Available: http://heattransfer.asmedigitalcollection.asme.org/.

Google Scholar

[21] R. S. Vajjha and D. K. Das, "Experimental determination of thermal conductivity of three nanofluids and development of new correlations," Int J Heat Mass Transf, vol. 52, no. 21–22, p.4675–4682, Oct. 2009.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.027

Google Scholar