[1]
Sun Q, Li Z, Wang J, Li S, Li B, Jiang L, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant. Colloids Surf A Physicochem Eng Asp. 2015 Apr 1;471:54–64.
DOI: 10.1016/j.colsurfa.2015.02.007
Google Scholar
[2]
Farhadi H, Riahi S, Ayatollahi S, Ahmadi H. Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control. Chemical Engineering Research Design. 2016 Jul 1;111:449–60.
DOI: 10.1016/j.cherd.2016.05.024
Google Scholar
[3]
Rodrigues Miranda C, Stori de Lara L, Costa Tonetto B. SPE 157033 Stability and Mobility of Functionalized Silica Nanoparticles for Enhanced Oil Recovery Applications. 2012.
DOI: 10.2118/157033-ms
Google Scholar
[4]
Denkov ND, Ivanov IB, Kralchevsky PA, Wasan DT. A Possible Mechanism of Stabilization of Emulsions by Solid Particles. Journal of Colloid and Interface Science, 1992 May, 150(2), 589-593.
DOI: 10.1016/0021-9797(92)90228-e
Google Scholar
[5]
Schwarz S, Grano S. Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids Surf A Physicochem Eng Asp. 2005 Apr 22;256(2–3):157–64.
DOI: 10.1016/j.colsurfa.2005.01.010
Google Scholar
[6]
Horozov TS. Foams and foam films stabilised by solid particles. Vol. 13, Current Opinion in Colloid and Interface Science. 2008. p.134–40.
DOI: 10.1016/j.cocis.2007.11.009
Google Scholar
[7]
Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids Surf A Physicochem Eng Asp. 2006 Jul 20;282–283:387–401.
DOI: 10.1016/j.colsurfa.2005.12.021
Google Scholar
[8]
Carn F, Colin A, Pitois O, Vignes-Adler M, Backov R. Foam drainage in the presence of nanoparticle-surfactant mixtures. Langmuir. 2009 Jul 21;25(14):7847–56.
DOI: 10.1021/la900414q
Google Scholar
[9]
Latif WMSM, Sharbini SN, Wan Sulaiman WR, Idris AK. Utilization of silicon dioxide nanoparticles in foam enhanced oil recovery - A comprehensive review. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing; 2019.
DOI: 10.1088/1757-899x/469/1/012027
Google Scholar
[10]
Adkins SS, Gohil D, Dickson JL, Webber SE, Johnston KP. Water-in-carbon dioxide emulsions stabilized with hydrophobic silica particles. Physical Chemistry Chemical Physics. 2007, 9(48), 6333–6343.
DOI: 10.1039/b711195a
Google Scholar
[11]
Worthen AJ, Bagaria HG, Chen Y, Bryant SL, Huh C, Johnston KP. Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. J Colloid Interface Sci. 2013 Feb 1;391(1):142–51.
DOI: 10.1016/j.jcis.2012.09.043
Google Scholar
[12]
Yekeen N, Manan MA, Idris AK, Samin AM, Risal AR. Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles. J Pet Sci Eng. 2017 Nov 1;159:115–34.
DOI: 10.1016/j.petrol.2017.09.021
Google Scholar
[13]
Ogolo NA, Olafuyi OA, Onyekonwu MO. the SPE Saudi Arabia Section Technical Symposium and Exhibition. 2012.
DOI: 10.2118/160847-MS
Google Scholar
[14]
Kostakis T, Ettelaie R, Murray BS. Effect of high salt concentrations on the stabilization of bubbles by silica particles. Langmuir. 2006 Jan 31;22(3):1273–80.
DOI: 10.1021/la052193f
Google Scholar
[15]
Paunov VN, Binks BP, Ashby NP. Adsorption of charged colloid particles to charged liquid surfaces. Langmuir. 2002 Sep 3;18(18):6946–55.
DOI: 10.1021/la0203584
Google Scholar
[16]
Metin CO, Lake LW, Miranda CR, Nguyen QP. Stability of aqueous silica nanoparticle dispersions. Journal of Nanoparticle Research. 2011 Feb;13(2):839–50.
DOI: 10.1007/s11051-010-0085-1
Google Scholar
[17]
Mat Latif WMS, Musa MSM, Balakirisnan ASM, Sulaiman WRW. The effect of surfactant concentration on nanoparticles surface wettability during wettability alteration of oil-wet carbonate rock. Journal of Mechanical Engineering and Sciences. 2021 Jun 10;15(2):7993–8002.
DOI: 10.15282/jmes.15.2.2021.05.0630
Google Scholar
[18]
Wang J, Xue G, Tian B, Li S, Chen K, Wang D, et al. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability. Energy and Fuels. 2017 Jan 19;31(1):408–17.
DOI: 10.1021/acs.energyfuels.6b02592
Google Scholar
[19]
Kirby SM, Anna SL, Walker LM. Effect of surfactant tail length and ionic strength on the interfacial properties of nanoparticle-surfactant complexes. Soft Matter. 2017;14(1):112–23.
DOI: 10.1039/c7sm01806a
Google Scholar
[20]
Binks BP, Lumsdon SO. Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir. 2001 Jul 24;17(15):4540–7.
DOI: 10.1021/la0103822
Google Scholar
[21]
Aroonsri A, Worthen A, Hariz T, Johnston K, Huh C, Bryant S. SPE 166319 Conditions for Generating Nanoparticle-Stabilized CO2 Foams in Fracture and Matrix Flow. 2013.
DOI: 10.2118/166319-ms
Google Scholar
[22]
Binks BP. Particles as surfactants similarities and differences. Current Opinion in Colloid & Interface Sciences. 2002 7, 21–41.
DOI: 10.1016/S1359-0294(02)00008-0
Google Scholar
[23]
Biswal NR, Rangera N, Singh JK. Effect of Different Surfactants on the Interfacial Behavior of the n Hexane-Water System in the Presence of Silica Nanoparticles. Journal of Physical Chemistry B. 2016 Jul 28;120(29):7265–74.
DOI: 10.1021/acs.jpcb.6b03763
Google Scholar
[24]
Saien J, Rezvani Pour A, Asadabadi S. Interfacial tension of the n-hexane-water system under the influence of magnetite nanoparticles and sodium dodecyl sulfate assembly at different temperatures. J Chem Eng Data. 2014 Jun 12;59(6):1835–42.
DOI: 10.1021/je401066j
Google Scholar
[25]
Khani, O., Mohammadi, M., Khaz'ali, A.R. et al. Effect of pH value and zeta potential on the stability of CO2 foam stabilized by SDS surfactant and SiO2, ZnO and Fe2O3 nanoparticles. Sci Rep. 2025 15, 10302.
DOI: 10.1038/s41598-025-94639-1
Google Scholar
[26]
Issakhov, M., Khanjani, M., Muratkhozhina, A. et al. Experimental and data-driven analysis for predicting nanofluid performance in improving foam stability and reducing mobility at critical micelle concentration. Sci Rep. 2024 14, 7856.
DOI: 10.1038/s41598-024-58609-3
Google Scholar
[27]
Zhang Y, Feng S, Jing Y, Bai J. Experimental study on the mechanism of nanoparticles improving the stability of high expansion foam. Asia Pasific Journal of Chemical Engineering. 2024 November/December 19(6).
DOI: 10.1002/apj.3148
Google Scholar
[28]
Rio E, Drenckhan W, Salonen A, Langevin D. Unusually stable liquid foams. Vol. 205, Advances in Colloid and Interface Science. 2014. p.74–86.
DOI: 10.1016/j.cis.2013.10.023
Google Scholar
[29]
Yekeen N, Idris AK, Manan MA, Samin AM, Risal AR, Kun TX. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin J Chem Eng. 2017 Mar 1;25(3):347–57.
DOI: 10.1016/j.cjche.2016.08.012
Google Scholar
[30]
Rahman A, Torabi F. Surfactant and nanoparticle synergy: Towards improved foam stability. Petroleum 2023 June 29;9(2):255-264.
DOI: 10.1016/j.petlm.2023.02.002
Google Scholar
[31]
Babamahmoudi S, Riahi S. Application of nano particle for enhancement of foam stability in the presence of crude oil: Experimental investigation. J Mol Liq. 2018 Aug 15;264:499–509.
DOI: 10.1016/j.molliq.2018.04.093
Google Scholar