Comparison of the Fatigue Crack Propagation Rates in S355 J0 and S355 J2 Steel Grades

Article Preview

Abstract:

The use of S355 high strength steel in civil engineering to design bridges, its elements or simple engineering parts allows material and economical savings meeting the strict construction requirements. The knowledge of the fatigue resistance of material plays the key role during design and maintenance of the bridge structures. This contribution brings a comparison of the fatigue crack growth resistance of two standard S355 J0 and S355 J2 steel grades. Differences in chemical composition and the texture of material structure could generally play a role in the fatigue crack growth. This study shows that in the case of studied steels the chemical composition has an influence on material fatigue behaviour, whereas the texture of material structure is irrelevant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Miki, K. Homma, T. Tominaga, High strength and high-performance steels and their use in bridge structures, Journal of Construction Steel Research. 58, (2002), 3–20.

DOI: 10.1016/s0143-974x(01)00028-1

Google Scholar

[2] A. M. P. de Jesus, R. Matos, B.F.C. Fontoura, C. Rebelo, L. Simoes da Silva, M. Veljkovic, A comparison of the fatigue behavior between S355 and S690 steel grades, Journal of Construction Steel Research. 79, (2012), 140–150.

DOI: 10.1016/j.jcsr.2012.07.021

Google Scholar

[3] J. Lewandowski, D. Rozumek, Cracks growth in S355 steel under cyclic bending with fillet welded joint, Theoretical and Applied Fracture Mechanics. 86, (2016), 342–350.

DOI: 10.1016/j.tafmec.2016.09.003

Google Scholar

[4] W. Gao, D. Wang, F. Cheng, X. Di, C. Deng, W. Xu, Microstructural and mechanical performance of underwater wet welded S355 steel, Journal of Materials Processing Technology. 238, (2016), 330–340.

DOI: 10.1016/j.jmatprotec.2016.07.039

Google Scholar

[5] R. Pawliczek, M. Prazmowski, Study on material property changes of mild steel S355 caused by block loads with varying mean stress, International Journal of Fatigue. 80, (2015), 171–177.

DOI: 10.1016/j.ijfatigue.2015.05.019

Google Scholar

[6] D. Rozumek, Z. Marciniak, G. Lesiuk, J. A. F. O. Correia, Mixed mode I/II/III fatigue crack growth in S355 steel, Procedia Structural Integrity. 5, (2017), 896–903.

DOI: 10.1016/j.prostr.2017.07.125

Google Scholar

[7] O. Adedipe, F. Brennan, A. Kolios, Review of corrosion fatigue in offshore structures: Present status and challenges in offshore wind sector, Renewable and Sustainable Energy Reviews. 61, (2016) 141–154.

DOI: 10.1016/j.rser.2016.02.017

Google Scholar

[8] EN 10025-2:2004 Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels.

DOI: 10.3403/30239477

Google Scholar

[9] European Committee for Standardization (CEN). EN1993-1-9: Eurocode 3: Design of steel structures, part 1-9: Fatigue. Brussels. European Standard. (2005).

Google Scholar

[10] American Society for Testing Materials. ASTM E647: Standard test method for measurement of fatigue crack growth rates. Annual Book of ASTM Standards. 3(1) (1999), 591–629.

Google Scholar

[11] P. C. Paris, F. Erdogan, A critical analysis of crack propagation laws, J. Basic Eng. 85, (1963), 528–533.

DOI: 10.1115/1.3656900

Google Scholar

[12] A. Fernández Canteli, C. Przybilla., M. Nogal., M. López Aenlle., E. Castillo., ProFatigue: A software program for probabilistic assessment of experimental fatigue data sets, Procedia Engineering, 74, (2014) 236–241.

DOI: 10.1016/j.proeng.2014.06.255

Google Scholar

[13] E. Castillo., A. Fernández-Canteli, A unified statistical methodology for modeling fatigue damage, Springer, (2009).

DOI: 10.1007/978-1-4020-9182-7_7

Google Scholar

[14] E. Castillo, A. Canteli, D. Siegele, Obtaining S-N curves from crack growth curves: an alternative to self-similarity, International Journal of Fracture, 187 (2014) 159–172.

DOI: 10.1007/s10704-014-9928-6

Google Scholar

[15] Z. Kala, Identification of stochastic interactions in nonlinear models of structural mechanics, AIP Conference Proceedings, (2017) 1863,480004.

Google Scholar

[16] Z. Kala, A., Omishore, Fuzzy stochastic approaches for analysing the serviceability limit state of load bearing systems, International Journal of Mathematics and Computers in Simulation 10 (2016) 294-301.

Google Scholar

[17] M. Krejsa, Z. Kala, S. Seitl, Inspection based probabilistic modeling of fatigue crack progression, Procedia Engineering (2016) 145-152.

DOI: 10.1016/j.proeng.2016.02.025

Google Scholar

[18] M. Krejsa, L. Koubová, J. Flodr, J. Protivinsky, Q.T. Nguyen, Probabilistic prediction of fatigue damage based on linear fracture mechanics, Frattura ed Integrita Strutturale 11(39) (2017) 143-159.

DOI: 10.3221/igf-esis.39.15

Google Scholar