Novel Low-K Dielectric Obtained by Xenon Implantation in SiO2

Article Preview

Abstract:

We implanted 300keV Xenon in silicon oxide at doses ranging from 1x1016 to 5x1016/cm2. For the first time, we reported the formation and the thermal evolution of bubbles/cavities in SiO2. Characterization by cross-section transmission electron microscopy (XTEM) and Rutherford backscattering spectrometry (RBS) showed that bubbles/cavities remain present even after a 1100°C annealing, while Xe strongly desorbs out at that temperature. Our measurements provides unexpected dielectric constant (k) lower than 1.6. These results make this technique very attractive for low-k applications in Si technology. Keywords: low-k dielectric, rare gas implantation, silicon oxid.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

291-296

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Semiconductor Industry Association, International Technology Roadmap for semiconductors, 1994 Edition, (http: / public. itrs. net/files/1994 ITRS/Home. htm).

Google Scholar

[2] P. K. Chu, C. Chan, Surface and coatings technology 136, (2001), pp.151-156.

Google Scholar

[3] T. Homma, R. Yamaguchi, Y. Murao, J. Electrochem Soc 140, (1993), pp.3599-3603.

Google Scholar

[4] S. Lin, C. Jin, M. Tsai, M. Daniels, A. Gonzalez, 4th Internationnal Interconnects Technology Conference, San Francisco, USA, IEEE, 4-6 June, pp.146-148.

Google Scholar

[5] A. Grill, Diamond and Related Materials 10, (2001), pp.234-239.

Google Scholar

[6] A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J.L. Plawsky, E. Simonyi, Thin solid Film 398-399, (2001), pp.513-522.

DOI: 10.1016/s0040-6090(01)01311-6

Google Scholar

[7] R.A. Van Santen, G.J. Kramer, Chem. Rev. 95, (1995), pp.637-630.

Google Scholar

[8] J. Liu, D. Gan, C. Hu, M. Kiene, P.S. Ho, W. Volksen, R.D. Miller, Appl. Phys. Lett. 81, (2002), pp.4180-4182.

DOI: 10.1063/1.1525054

Google Scholar

[9] A. Volinsky, J. Vella , W. Gerberich, Thin Solid Films 429, (2003), pp.201-210.

Google Scholar

[10] C.L. Chang, T.J. Huang, Materials Science and Engineering B98, (2003), pp.45-53.

Google Scholar

[11] C.C. Griffioen, J.H. Evans, P.C. de Jong, A. Van Veen, Nucl. Instr. and Meth. B27, (1987), p.147.

Google Scholar

[12] E. Ntsoenzok, H. Assaf, M.O. Ruault, MRS Spring Meeting, San Francisco, 2005 Fig. 6 : Dielectric constant evolution as a function of porosity for different dielectrics. 6.

Google Scholar

[13] G.W. Arnold, G. Battaglin, G. Mattei, P. Mazzoldi, S. Zandolin, Nucl. Instr. and Meth. B 166-167, (2000), pp.440-444.

Google Scholar

[14] C.H. Zhang , K.Q. Chen, Y.S. Wang, J.G. Sun, D.Y. Shen, Journal of Nuclear Materials 245, (1997), p.210.

Google Scholar

[15] S. Godey, T. Sauvage, E. Ntsoenzok, H. Erramli, M.F. Beaufort, J.F. Barbot, B. Leroy, J. Appl. Phys. 87, (1999), p.2158.

DOI: 10.1063/1.372155

Google Scholar

[16] J.H. Golden, C.J. Hawker, P.S. Ho., Semiconductor International 24, no. 5, ( 2001), pp.79-88.

Google Scholar