Dispersion and Absorption in Media with Stretch Exponential and Fractional Power Relaxation

Article Preview

Abstract:

Dispersion and absorption in a media with stretch exponential or Kohlrausch–Williams– Watts relaxation are considered. The frequency-dependent dispersion and absorption coefficients, phase and group velocities are obtained and compared to Debye–Mandelshtam– Leontovich expressions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 113)

Pages:

531-536

Citation:

Online since:

June 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. D. Landau and E. M. Lifshitz: Hydrodynamics (Butterworth-Heinemann, New York, 1975).

Google Scholar

[2] A. Blumen, J. Klafter and G. Zumofen: Optical Spectroscopy of Glasses (ed. I. Zschokke, Dordrecht: Reidel, 1986).

Google Scholar

[3] K. L. Nagai: Non-Debye Relaxation in Condensed Matter (Eds. T.V. Ramakrishnan and L. Raj Lakshmi, Singapore, World Scientific, 1986).

Google Scholar

[4] P. Debye: Polar Molecules (Dover, New York, 1945).

Google Scholar

[5] L. I. Mandelshtam and M. A. Leontovich: To the theory of the absorption of sound in liquids(ZhETF 7(3), 1937), pp.438-453.

Google Scholar

[6] G. Williams and D. C. Watts: Nonsymmetrical dielectric relaxation from a simple decay function (Trans. Faraday Soc., 66, 1970), pp.80-85.

DOI: 10.1039/tf9706600080

Google Scholar

[7] G. Williams G., D. C. Watts, S. B. Dev and A. M. North: Further considerations of nonsymmetrical dielectric relaxation behavior arising from a simple empirical decay function (Trans. Faraday Soc., 67 (581), 1971), pp.1323-1335.

DOI: 10.1039/tf9716701323

Google Scholar

[8] S. Havriliak and S. J. Havriliak: Dielectric and Mechanical Relaxation in Materials (Hanser, Munich, 1997).

Google Scholar

[9] O. V. Rudenko: Theoretical Foundations of Nonlinear Acoustics (Studies in Soviet science, Consultants Bureau, 1977).

Google Scholar

[10] B. K. P. Scaife: Principles of Dielectrics (2nd ed., Oxford University Press, London, 1998).

Google Scholar

[11] P. Miškinis: Nonlinear and Nonlocal Integrable Models (Vilnius, Technika 2003) (in Lithuanian).

Google Scholar