Mechanical Properties of Winding Conductors Affected by Cyclic Thermal Overloads

Article Preview

Abstract:

The influence of thermal cyclic overloads on mechanical properties of winding conductors was investigated. Copper-niobium microcomposite, soft and hard pure copper wires were conditioned at temperatures range from 77 K to 500 K. The treatment was done during 100 cycles of fast conductor cooling to liquid nitrogen temperature and further fast heating in a climatic chamber. The ultimate tensile stress limit and the elongation at failure of metal-matrix copper-niobium microcomposite, soft and hard copper wires were measured before and after thermal treatment with a testing machine at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 113)

Pages:

541-544

Citation:

Online since:

June 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Peng, C. L. Gu, K. Rosseel, J. Vanacken and F. Herlach: Advanced numerical simulation of pulsed magnets with a finite element method (Measurement Science and Technology, IoP, Vol. 16, 2005), pp.562-568.

DOI: 10.1088/0957-0233/16/2/032

Google Scholar

[2] V. Šnirpūnas, E. Stupak, R. Kačianauskas, A. Kačeniauskas and J. Novickij: Finite element analysis of thermal fields in the pulsed power magnetic field generator (Energetika, Press of Lithuanian Academy of Sciences, Issue 4, 2004), pp.12-18.

Google Scholar

[3] L. Brandao, K. Han, J. D. Embury, R. Walsh, V. Toplosky and S. Van Sciver: Development of High Strength Pure Copper Wires by Cryogenic Deformation for Magnet Applications (IEEE Transactions of Applied Superconductivity, Vol. 10, Issue 1, March 2000), pp.1282-1287.

DOI: 10.1109/77.828470

Google Scholar

[4] P. Frings, Y. Huang and E. Hennes: Pulsed-high-field technology, close to the edge? (Physica B, Elsevier, Vol. 319, 2002), pp.330-338.

DOI: 10.1016/s0921-4526(02)01136-5

Google Scholar

[5] K. Han, J. D. Embury, R. J. Sims, L. J. Campbell, H. J. Schneider-Muntau, V. I. Pantsyrnyi, A. Shikov, A. Nikitin and A. Vorobieva: The Fabrication, Properties and Microstructure of Cu-Ag and Cu-Nb Composite Conductors (Material Science and Engineering, Vol. A267, 1999), pp.99-114.

DOI: 10.1016/s0921-5093(99)00025-8

Google Scholar

[6] Y. M. Wang, M. W. Chen, F. H. Zhou and E. Ma: High Tensile Ductility in Nanostructured Metal (Nature, Vol. 419, 2002), pp.912-915.

DOI: 10.1038/nature01133

Google Scholar

[7] A. Shikov, V. Pantsyrnyi, A. Nikulin, N. Kozlenkova, M. Polikarpova and N. Khlebova: Investigation on the CuNb in-situ, Microcomposites Conductivity During the Process of Tensile Testing (IEEE Transactions on Applied Superconductivity, Vol. 12, Issue 1, March 2002), p.11851188.

DOI: 10.1109/tasc.2002.1018613

Google Scholar

[8] F. Herlach: Laboratory electromagnets - from Oersted to megagauss (Physica B, Elsevier, Vol. 319, 2002), pp.321-326.

DOI: 10.1016/s0921-4526(02)01135-3

Google Scholar

[9] M. Filgueira, J. Nilson and R. Rosenthal: Mechanical Behaviour of Copper 15 % Volume Niobium Microcomposite Wires (Materials Research, Vol. 4(2), 2001), pp.1523-1542.

DOI: 10.1590/s1516-14392001000200015

Google Scholar

[10] S. Fonet, E. Bobrov, C. Renaud, E. Gregory and J. Wong: Pulsed Magnet Fabricated With a Wire-Wound Metal-Matrix Cu/Nb Microcomposite (IEEE Transactions on Magnetics, Vol. 24, No 2, March 1988), pp.1059-1062.

DOI: 10.1109/20.11411

Google Scholar