One-Dimensional Nonlinear and Nonlocal Oscillations of Plasma in Solid Body

Article Preview

Abstract:

A simple one-dimensional model describing nonlinear and nonlocal oscillations of electron plasma is considered. Due to regard of the nonlocality of the field potential, it allows one to smooth down the peaks of nonlinear waves, to steep up the wave front, and to modify the velocity amplitude and phase of the traveling wave.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 113)

Pages:

521-525

Citation:

Online since:

June 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. B. Tatarinova, K. V. Chukbar: JETP Vol. 92(3) (1987), p.809.

Google Scholar

[2] P. Miškinis: The nonlocal influence on the oscillations of plasma (Proc. XXVII-ICPIG, Vol. 1- 4, Greifswald, Germany, 2004), pp.177-178.

Google Scholar

[3] K. V. Chukbar: JETP Vol. 97(4) (1990), p.1362.

Google Scholar

[4] A. N. Artemenko, A. N. Kruglov: Phys. Lett. A Vol. 143 (1990), p.485.

Google Scholar

[5] M. V. Feigel'man, V. B. Geshkenbein and A. I. Larkin: Physica C Vol. 167 (1990), p.177.

Google Scholar

[6] K. V. Chukbar, V. B. Yan'kov: JETP Letters. Vol. 61(6) (1995), p.487.

Google Scholar

[7] M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Eds. ): Levy Flights and Related Topics in Physics (Springer; Berlin 1995).

Google Scholar

[8] G. S. Samko, A. A. Kilbas and O. I. Marichev: Fractional Integrals and Derivatives. (Gordon Breach; Amsterdam 1993).

Google Scholar

[9] P. Miškinis: Nonlinear and Nonlocal Integrable Models (Technika, Vilnius 2003) (in Lithuanian).

Google Scholar

[10] R. Z. Sagdeev: Problems of Theory of Plasma. (Moscow Atomizdat. Vol. 4 1964), p.20 (in Russian).

Google Scholar

[11] A. I. Achiezer, G. Y. Liubarsky: Dokl. AN USSR. Vol. 80 (1951), p.193 (in Russian).

Google Scholar