[1]
T. Pietronero, E. Tosatti E. (Eds): Fractals in Physics (Elsevier Science Publishers B.V., North- Holland, 1986).
Google Scholar
[2]
J. S. Lin, M. Y. Tang: Fellers fractal analysis of cotton cellulose as characterized by smallangle X-ray scattering (ACS Symp. Ser. Vol. 340, pt. 14, 1987), pp.233-254.
DOI: 10.1021/bk-1987-0340.ch014
Google Scholar
[3]
S. G. Samko, A. A. Kilbas and O. I. Marichev: Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Amsterdam 1993).
Google Scholar
[4]
R. R. Nigmatullin: The realization of the generalized transfer equation in a medium with fractal geometry (Phys. Stat. So. (b). Vol. 133, 1986) pp.425-430.
DOI: 10.1002/pssb.2221330150
Google Scholar
[5]
R. Hilfer (Ed. ): Applications of Fractional Calculus in Physics (World ScientiЇc Pub. Co, Singapore, 2000).
Google Scholar
[6]
P. Miškinis: On the suppositional existence of fractional (super) p-branes (Phys. Lett. A. Vol. 146, No 4, 1990) pp.155-158.
Google Scholar
[7]
M. Mulder: Basic principles of membrane technology (Kluwer Acad. Publishers, Dordrecht. Boston. London, 1995).
Google Scholar
[8]
G. M. Zaslavsky: Chaos, fractional kinetics, and anomalous transport (Phys. Rep. Vol. 371, 2002) pp.461-580.
DOI: 10.1016/s0370-1573(02)00331-9
Google Scholar
[9]
P. Miškinis: Nonlinear and Nonlocal Integrable Models (Technika; Vilnius) 2003 (in Lithuanian).
Google Scholar