Structural Relaxation Processes in Fe40Ni40P14B6 Glass under Continuous Heating

Article Preview

Abstract:

A set of the techniques, including large- and small-angle X-ray scattering, differential scanning calorimetry, electrical resistance and microhardness measurements was used to study the changes in structure of the well-known Fe40Ni40P14B6 metallic glass under continuous heating up to the crystallization onset temperature. The measurements performed in situ and after rapid cooling from different temperatures revealed that structural relaxation is a multi-stage process involving variations of the short-range order, relief of quenched-in stresses, changes of the free volume concentration and enhancement of the concentration inhomogeneities. The temperature ranges of each process have been established. Using proposed approximate equation describing the scattering particles growth at a constant heating rate, it has been shown that the enhancement of phase separation in the glass investigated is governed by diffusion-limited growth mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

133-138

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. L. Greer, in Rapidly Solidified Alloys, Marcel Decker, New York, p.269 (1993).

Google Scholar

[2] E. Illekova, Int. J. Rapid Solidification, 8, 195 (1994).

Google Scholar

[3] M. Tejedor, J. A. Garcia, J. Carrizo, L. Elbaile, J. D. Santos, J. Magn. Magn. Mater., 202, 485 (1999).

Google Scholar

[4] T. Mihara, S. Otake, H. Fukushima, M. Doyama, J. Phys. F: Metal. Phys., 11, 727 (1981).

Google Scholar

[5] I. -R. Lu, G. P. Görler, H. -J. Fecht, R. Willnecker, J. Non-Cryst. Solids, 274, 294 (2000).

Google Scholar

[6] C. Nagel, K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, F. Faupel, Phys. Rev. B 57, 10224 (1998).

Google Scholar

[7] M. E. Sonius, B. J. Thijsse, A. van den Beukel, Scr. Metall., 17, 545 (1983).

Google Scholar

[8] V. N. Novikov, J. Less-Common Metals, 158, 15 (1990).

Google Scholar

[9] J. L. Walter, D. G. Legrand, F. E. Luborsky, Mater. Sci. and Eng., 29, 161 (1977).

Google Scholar

[10] J. U. Madsen, Scand. J. Metallurg., 8, 27 (1979).

Google Scholar

[11] A. K. Gangopadhyay, T. K. Croat, K. F. Kelton, Acta Mater., 48, 4797 (2000).

Google Scholar

[12] V. I. Tkatch, V. I. Krysov, V. Yu. Kameneva, A. I. Limanivskii, S. G. Rassolov, S. K. Krysova, V. V. Popov, Kondensirovannye sredy i mezhfaznye granitsy 3, 46 (2001) (in Russian).

Google Scholar

[13] A. Guiner, G. Fournet, Small-Angle Scattering of X-rays, J. Wiley & Sons Inc., New York, (1955).

Google Scholar

[14] A. L. Greer, Thermochim. Acta, 42, 193 (1980).

Google Scholar

[15] H. Kimura, D. Ast, in Proc. 4-th Intern. Conf. on Rapidly Quenched Metals, vol. 1, Jap. Inst. of Metals, Sendai, p.475 (1982).

Google Scholar

[16] O. Haruyama, H. M. Kimura, A. Inoue, Mater. Sci. and Eng. A, 226-228, 209 (1997).

Google Scholar

[17] H. B. Aaron, D. Fainstein, G. R. Kotler, J. Appl. Phys., 14, 4404 (1976).

Google Scholar

[18] S. G. Rassolov, V. I. Tkatch, N. I. Selyakova, J. Appl. Phys., 92, 6340 (2002).

Google Scholar

[19] D. G. Morris, Scr. Metall., 16, 585 (1982).

Google Scholar