Mechanical Spectroscopy of Quasicrystals

Article Preview

Abstract:

The use of mechanical spectroscopy to characterize the quasicrystalline state of solid matter is reviewed. After a general, chronological survey of existing mechanical spectroscopy studies, which include elastic properties as well as various relaxation phenomena between lowtemperature tunneling processes and high-temperature background damping, three subjects are considered in more detail: (i) the nature of intrinsic relaxation phenomena, including relaxation peaks in Al-Pd-Mn single quasicrystals, (ii) hydrogen-induced loss peaks in Zr/Ti-based quasicrystals and their use as a probe, and (iii) the study of nano-quasicrystalline structures and amorphousquasicrystalline transitions. It is shown that by combined studies of different elastic and anelastic phenomena, mechanical spectroscopy can be a valuable tool to obtain information about the nature and motion of defects, about the type of local atomic order, and about phase transformations and different processes leading to the formation of quasicrystalline order.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

25-36

Citation:

Online since:

August 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett., 53, 1951 (1984).

Google Scholar

[2] M. Duneau, A. Katz, Phys. Rev. Lett., 54, 2688 (1985).

Google Scholar

[3] V. Elser, Phys. Rev. B, 32, 4892 (1985).

Google Scholar

[4] F. Gähler, S. Hocker, U. Koschella, J. Roth, H. -R. Trebin, Phason Elasticity and Atomic Dynamics of Quasicrystals, in: H. -R. Trebin, ed., Quasicrystals, Structure and Physical Properties, Wiley-VCH, p.338 (2003).

DOI: 10.1002/3527606572

Google Scholar

[5] M. Weller, B. Damson, Mechanical Spectroscopy of Quasicrystals, in: H. -R. Trebin, ed., Quasicrystals, Structure and Physical Properties, Wiley-VCH, p.523 (2003).

Google Scholar

[6] R. M. Stroud, A. M. Viano, P. C. Gibbons, K. F. Kelton, S. T. Misture, Appl. Phys. Lett., 69, 2998 (1996).

DOI: 10.1063/1.117756

Google Scholar

[7] H. -R. Sinning, R. Scarfone, I. S. Golovin, Mechanical Spectroscopy of Hydrogen-Absorbing Quasicrystals, in: H. -R. Trebin, ed., Quasicrystals, Structure and Physical Properties, WileyVCH, p.536 (2003).

DOI: 10.1016/j.msea.2003.08.076

Google Scholar

[8] N. O. Birge, B. Golding, W. H. Haemmerle, H. S. Chen, J.M. Parsey Jr., Phys. Rev. B, 36, 7685 (1987).

Google Scholar

[9] J. E. VanCleve, N. A. Gershenfeld, K. Knorr, P. A. Bancel, Phys. Rev. B, 41, 980 (1990).

Google Scholar

[10] M. Feuerbacher, C. Thomas, K. Urban, Single-Quasicrystal Growth, in: H. -R. Trebin, ed., Quasicrystals, Structure and Physical Properties, Wiley-VCH, p.2 (2003).

Google Scholar

[11] G. A. M. Reynolds, B. Golding, A. R. Kortan, J. M. Parsey Jr., Phys. Rev. B, 41, 1194 (1990).

Google Scholar

[12] S. Sathish, A. Kulik, G. Gremaud, Solid State Commun., 77, 403 (1991).

Google Scholar

[13] Y. Amazit, M. de Boissieu, A. Zarembowitch, Europhys. Lett., 20, 703 (1992).

Google Scholar

[14] P. S. Spoor, J. D. Maynard, A. R. Kortan, Phys. Rev. Lett., 75 3462 (1995).

Google Scholar

[15] L. Q. Xing, J. Eckert, W. Löser, L. Schultz, Appl. Phys. Lett., 74, 664 (1999).

Google Scholar

[16] A. Inoue, T. Zhang, J. Saida, M. Matsushita, Mater. Trans. JIM, 41, 1511 (2000).

Google Scholar

[17] R. Nicula, U. Ponkratz, A. Jianu, C. Schick, E. Burkel, Mater. Sci. Eng. A, 294-296, 90 (2000).

DOI: 10.1016/s0921-5093(00)01205-3

Google Scholar

[18] A. Jianu, H. -R. Sinning, I. S. Golovin, E. Burkel, in: A. Hazotte, ed., Solid State Transformation and Heat Treatment, Wiley-VCH, p.145 (2004).

DOI: 10.1002/3527604839.ch18

Google Scholar

[19] H. Okumura, A. -P. Tsai, A. Inoue, T. Masumoto, Mater. Sci. Eng. A, 181-182, 781 (1994).

Google Scholar

[20] B. Damson, M. Weller, M. Feuerbacher, B. Grushko, K. Urban, Mater. Sci. Eng., 294-296, 806 (2000).

Google Scholar

[21] M. Feuerbacher, M. Weller, J. Diehl, K. Urban, Phil, Mag. Lett., 74, 81 (1996).

Google Scholar

[22] M. Weller, M. Feuerbacher, J. Diehl, K. Urban, J. de Physique IV, C8-239 (1996).

Google Scholar

[23] B. Damson, M. Weller, M. Feuerbacher, B. Grushko, K. Urban, J. Alloy Compd., 310, 184 (2000).

Google Scholar

[24] K. Foster, R. G. Leisure, J. B. Shaklee, J. Y. Kim, K. F. Kelton, Phys. Rev. B, 59, 11132 (1999).

Google Scholar

[25] K. Foster, R. G. Leisure, J. B. Shaklee, J. Y. Kim, K. F. Kelton, Phys. Rev. B, 61, 241 (2000).

Google Scholar

[26] R. Scarfone, H. -R. Sinning, J. Alloy Compd., 310, 229 (2000).

Google Scholar

[27] H. -R. Sinning, R. Scarfone, Proc. Int. Conf. on Imperfections Interaction and Anelasticity Phenomena in Solids (IIAPS-10), Tula State University, Tula (Russia), p.33 (2002).

Google Scholar

[28] H. -R. Sinning, R. Scarfone, I. S. Golovin, Mater. Sci. Eng. A, 370, 78 (2004).

Google Scholar

[29] J. Fikar, R. Schaller, N. Guilbaud, N. Baluc, Defect Diffus. Forum, 203-205, 289 (2002).

DOI: 10.4028/www.scientific.net/ddf.203-205.289

Google Scholar

[30] J. Fikar, Thèse No. 2707, Ecole Polytechnique Fédérale de Lausanne (2003).

Google Scholar

[31] J. Fikar, R. Schaller, N. Baluc, Mater. Sci. Eng. A, 370, 524 (2004).

Google Scholar

[32] H. -R. Sinning, I. S. Golovin, A. Jianu, Mater. Res. Soc. Symp. Proc., 805, 335 (2004).

Google Scholar

[33] H. -R. Sinning, I. S. Golovin, A. Jianu, in: A. Hazotte, ed., Solid State Transformation and Heat Treatment, Wiley-VCH, p.135, (2004).

Google Scholar

[34] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).

Google Scholar

[35] Per Bak, Phys. Rev. Lett., 54, 1517 (1985).

Google Scholar

[36] H. -R. Sinning, Def. Diffus. Forum, 123-124, 1 (1995).

Google Scholar

[37] H. -R. Sinning, J. Alloy Compd., 310, 224 (2000).

Google Scholar

[38] H. -R. Sinning, Phys. Rev. Lett., 85, 3201 (2000).

Google Scholar

[39] H. -R. Sinning, G. Steckler, R. Scarfone, Adv. Eng. Mater., 3, 706 (2001).

Google Scholar

[40] H. -R. Sinning, Mater. Sci. Eng. A, 370, 109 (2004).

Google Scholar

[41] R. Scarfone, Dissertation (Ph.D. thesis), Techn. Univ. Braunschweig (2002), available at http: /www. biblio. tu-bs. de/ediss/data/20020410a/20020410a. html.

Google Scholar

[42] R. Kirchheim, Progr. Mater. Sci., 32, 261 (1988).

Google Scholar

[43] W. J. Kim, P. C. Gibbons, K. F. Kelton, Phil. Mag. A, 78, 1111 (1998).

Google Scholar

[44] W. J. Kim, P. C. Gibbons, K. F. Kelton, W. B. Yelon, Phys. Rev. B, 58, 2578 (1998).

Google Scholar

[45] F.C. Frank, Proc. Roy. Soc. London A, 215, 43 (1952).

Google Scholar

[46] H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann, G. Reiter, Nature 408, 839 (2000).

DOI: 10.1038/35048537

Google Scholar

[47] J. Saida, M. Matsushita, A. Inoue, Appl. Phys. Lett. 79, 412 (2001).

Google Scholar

[48] T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D. M. Herlach, Phys. Rev. Lett., 89, 075507 (2002).

DOI: 10.1103/physrevlett.89.075507

Google Scholar

[49] W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He, E. Ma, Phys. Rev. Lett., 92, 145502 (2004).

Google Scholar

[50] S. Scudino, J. Eckert, U. Kühn, H. Breitzke, K. Lüders, L. Schultz, Mat. Res. Soc. Symp. Proc., 806, 83 (2004).

Google Scholar

[51] H. -R. Sinning, I. S. Golovin, A. Jianu, submitted to Proc. Twelfth International Conference on Liquid and Amorphous Metals (LAM 12), to appear in J. Non-cryst. Solids.

Google Scholar