Hydrogen Interaction with Dissolved Atoms and Relaxation Properties of Metal Solid Solutions

Article Preview

Abstract:

The H(D) atom’s interaction with one another, ‘heavy’ interstitial atoms (O, N, C), and substitutional atoms is analyzed on the basis of strain-induced (elastic) interaction. The interaction energies are calculated for bcc, fcc, and hcp metal solid solutions with regard to the discrete atomic structure of the host lattice. The elastic constants, Born-von Karman constants of the host lattice, and concentration expansion coefficients of the solid solution lattice due to solute atoms, are used as the parameters for numerical input. It is shown that the interaction is long-range, oscillating, and anisotropic. In all cases, the coordination shells of both types - with attraction and with repulsion - exist. The interaction energy dependence on the distance is due mainly to the crystal lattice type. The strain-induced interaction should be supplemented by repulsion in the nearest coordination shells for the case of interstitial-interstitial interaction and by chemical interaction in the case of H-substitutional interaction. Two examples are given for the use of the strain-induced interaction energies in calculations relaxation processes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

41-50

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Khachaturyan, Theory of Phase Transformation and Structure of Solid Solutions, Nauka, Moscow, 1974. (in Russian).

Google Scholar

[2] A. G. Khachaturyan, Theory of Structural Transformations in Solids, Willey, New York, (1983).

Google Scholar

[3] V. N. Bugaev, V. A. Tatarenko, Interaction and Arrangement of Atoms in Interstitial Solid Solutions Based on Close-Packed Metals, Naukova Dumka, Kiev, 1989. (in Russian).

Google Scholar

[4] R. Schmidt, H. Wipf, Materials Science Forum, 119-121, 133 (1993).

Google Scholar

[5] I. S. Golovin, M. S. Blanter, A. V. Vasiliev, J. Phys. 6, C8-107 (1996).

Google Scholar

[6] P. Schiller, H. Nijman, Phys. status sol. (a) 31, K77 (1975).

Google Scholar

[7] G. Cannelli, L. Verdini, Ricerca Sci., 36, 246 (1966).

Google Scholar

[8] T. Ebata, R. Hanada, H. Kimura, J. Japan Inst. Met., 55, 29 (1991).

Google Scholar

[9] San-Qiang Shi, W. B. Li, J. Phys. 46, C10-91 (1985).

Google Scholar

[10] A. G. Khachaturyan, Sov. Phys. Solid State (English transl. ), 9, 2040 (1968).

Google Scholar

[11] H. Cook, D. de Fontaine, Acta. Met., 17, 915 (1969).

Google Scholar

[12] M. S. Blanter, A. G. Khachaturyan, Metall. Trans. 9A, 753 (1978).

Google Scholar

[13] V. A. Tatarenko, K. L. Tsynman, Metal Phys. and New Technol., 14, 14 (1993). (in Russian).

Google Scholar

[14] V. A. Tatarenko, K. L. Tsynman, Metal Phys. and New Technol., 19, 9 (1997). (in Russian).

Google Scholar

[15] V. A. Tatarenko, K. L. Tsynman, Metal Phys. and New Technol., 20 (1998). (in Russian).

Google Scholar

[16] M. S. Blanter, E. B. Granovskiy, J. Alloy Compd., 335, 1 (2002).

Google Scholar

[17] A. I. Shirley, C. K. Hall, Phys Rev. B 33, 8084; 8089 (1986).

Google Scholar

[18] C. V. Baiden, V. G. Vaks, N. E. Zein, G. D. Simoljuk, Fiz. Met. Metalloved., 77, 17 (1994). (in Russian).

Google Scholar

[19] S. V. Beiden, V. G. Vaks, Phys. Lett. A, 163, 209 (1992).

Google Scholar

[20] M. S. Blanter, Phys. Stat. Sol. (b) 200, 423 (1997).

Google Scholar

[21] M. S. Blanter, J. Alloy Compd., 253-234, 364 (1997).

Google Scholar

[22] M. S. Blanter, I. S. Golovin, E. B. Granovskiy, H. -R. Sinning, J. Alloy Compd. 345, 1 (2002).

Google Scholar

[23] A. I. Schirley, C. K. Hall, N. J. Prince, Acta Met., 31, 985 (1983).

Google Scholar

[24] M. S. Blanter, Phys. Rev. B, 50 , 3603 (1994).

Google Scholar

[25] A. I. Schirley, C. K. Hall, Acta Met., 32, 49 (1984).

Google Scholar

[26] M. S. Blanter, E. B. Granovskiy, Phys. Stat. Sol. (b) 212, 65 (1999).

Google Scholar

[27] M. S. Blanter, J. Alloy Compd. 282, 137 (1999).

Google Scholar

[28] H. Horner, H. Wagner, J. Phys., C7, 3305 (1974).

Google Scholar

[29] A. I. Schirley, C. K. Hall, Scr. Met., 17, 1003 (1983).

Google Scholar

[30] V. G. Vaks, N. E. Zein, V. Zinenko, A. G. Orlov, Zh. Eksp. Teor. Fiz., 87, 2030 (1984). (English translation: Sov. Phys. JETP).

Google Scholar

[31] S. Okuda, H. Mizubayashi, N. Matzumoto, C. Mochizuki, R. Hanada, Acta Met., 32, 2125 (1984).

Google Scholar

[32] S. Dietrich, H. Wagner, Z. Physik B, 36, 121 (1979).

Google Scholar

[33] V. A. Tatarenko, K. L. Tsynman, Solid State Ionics, 101-103, 1061 (1993).

Google Scholar

[34] R. V. Chepulskii, V. A. Tatarenko, Phil. Mag. A, 81, 311 (2001).

Google Scholar

[35] V. A. Somenkov, S. S. Schilschtein, Progress in Material Science, 24, 267 (1979).

Google Scholar

[36] Feng Liu, M. Challa, S. N. Khanna, P. Jena, Phys. Rev. Lett., 63, 1396 (1989); 65, 1169 (1990).

Google Scholar

[37] M. S. Blanter, L. B. Magalas, Sol. St. Phen., 89, 115 (2003).

Google Scholar

[38] C. Koudou, C. Minot, C. Demangeat, Europhysics Lett., 13, 263 (1990).

Google Scholar

[39] C. Koudou, C. Minot, C. Demangeat, Phys. Rev. Lett., 64, 1474 (1990).

Google Scholar

[40] Yan Wang, M. Y. Chou, Phys. Rev. B 49, 13357 (1994).

Google Scholar

[41] C. Domain, R. Besson, A. Legris, Acta Mater., 50, 3513 (2002).

Google Scholar

[42] A. C. Switendick, Z. Physikalische Chemie Neue Folge, 117, 89 (1979).

Google Scholar

[43] D. C. Westlake, J. Less-com. Metals, 90, 251 (1983).

Google Scholar

[44] M. S. Blanter, M. Y. Fradkov, Acta Metall. Mater., 40, 2201 (1992).

Google Scholar

[45] M. S. Blanter, E. B. Granovskiy, L. B. Magalas, Phys. Stat. Sol. (b), 240, 75 (2003).

Google Scholar

[46] I. S. Golovin, M. S. Blanter, R. Schaller, Phys. Stat. Sol. (a) 160, 49 (1997).

Google Scholar

[47] R. Hanada, M. Shinohara, Y. Sado, H. Kimura, J. Phys., 42, C5-757 (1981).

Google Scholar

[48] G. Cannelli, L. Verdini, Ricerca Sci., 36, 98 (1966).

Google Scholar

[49] P. Schiller, A. Schneiders, Phys. status sol. (a) 29, 375 (1975).

Google Scholar