Diffusion of Hydrogen in the Ni30Ti50Cu20 Shape Memory Alloy

Article Preview

Abstract:

The chemical diffusion coefficient (Dc) of hydrogen in the Ni30Ti50Cu20 shape memory alloy has been determined in the temperature range 700 - 1150 K by investigating the kinetics of H2 absorption. The mobility of H has also been deduced between 250 K and 280 K from a Snoek-type internal friction peak. The values of the Einstein diffusion coefficient (DE) derived from the relaxation time of this peak were in keeping with those of Dc obtained at low H contents (nH = H/Me < 0.01 ). The combined Arrhenius plot of DE and Dc gave the following values for the diffusion parameters: W = 0.52 ± 0.02 eV, D0 = (5±2)x10-4 cm2/s.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

51-56

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Saburi, in Shape Memory Materials, K. Otsuka and M. Wayman (Eds), Cambridge University Press, p.49 (1998).

Google Scholar

[2] T. H. Nam, T. Saburi, K. Shimizu, Mater. Trans. JIM, 31, 950 (1990).

Google Scholar

[3] A. Biscarini, B. Coluzzi, G. Mazzolai, A. Tuissi, F. M. Mazzolai, J. Alloys and Compds. 355, 52 (2003).

DOI: 10.1016/s0925-8388(03)00267-6

Google Scholar

[4] I. Yoshida, D. Monma, K. Iino, K. Otsuka, M. Asai, H. Tsuzuki, J. Alloys and Compds., 356357, 79 (2003).

Google Scholar

[5] A. Biscarini, B. Coluzzi, R. Campanella, G. Mazzolai, L. Trotta, A. Tuissi, F. M. Mazzolai, Acta Mater., 47, 4525 (1999).

DOI: 10.1016/s1359-6454(99)00337-7

Google Scholar

[6] A. Rotini, A. Biscarini, R. Campanella, B. Coluzzi, G. Mazzolai, F. M. Mazzolai, Scripta Mater., 44, 719 (2001).

DOI: 10.1016/s1359-6462(00)00672-2

Google Scholar

[7] B. Coluzzi, A. Biscarini, R. Campanella, L. Trotta, G. Mazzolai, A. Tuissi, F. M. Mazzolai, Acta Mater., 47, 1965 (1999).

DOI: 10.1016/s1359-6454(99)00031-2

Google Scholar

[8] F. M. Mazzolai, A. Biscarini, R. Campanella, B. Coluzzi, G. Mazzolai, A. Rotini, A. Tuissi Acta Mater., 51, 573 (2003).

DOI: 10.1016/s1359-6454(02)00439-1

Google Scholar

[9] A. Biscarini, B. Coluzzi, G. Mazzolai, A. Tuissi, F. M. Mazzolai, J. Alloys and Compds., 356-357, 52 (2003).

DOI: 10.1016/s0925-8388(02)01289-6

Google Scholar

[10] B. Coluzzi, A. Biscarini, G. Mazzolai, F. M. Mazzolai, Scripta Mater., 51, 199 (2004).

Google Scholar

[11] F. M. Mazzolai, A. Biscarini, B. Coluzzi, G. Mazzolai, Appl. Phys. Lett., in press (2004).

Google Scholar

[12] A. Biscarini, B. Coluzzi, G. Mazzolai, F. M. Mazzolai, J. Alloys and Compds., submitted.

Google Scholar

[13] Elaborated from: P. G. Shewmon, Diffusion in Solids, Mc Graw Hill, N.Y., p.18, (1963).

Google Scholar

[14] J. Völkl, G. Alefeld, in Hydrogen in Metals 1, ed. by G. Alefeld and J. Völkl, vol. 28, Topics in Applied Physics, Springer, Berlin, p.321, (1978).

DOI: 10.1007/3540087052_51

Google Scholar