Comparative Study on the Oxidation Resistance between Ti-Al-Si-N and Ti-Al-N Coatings

Article Preview

Abstract:

High-temperature oxidation behaviors of Ti-Al-Si-N and Ti-Al-N films were comparatively investigated in this work. Two kinds of Ti0.75Al0.25N and Ti0.69Al0.23Si0.08N films were deposited on WC-Co substrates by a DC magnetron sputtering method using separate Ti3Al(99.9%) and Si(99.99%) targets in a gaseous mixture of Ar and N2. Si addition of 8 at.% into Ti-Al-N film modified its microstructure to a fine composite comprising, Ti-Al-N crystallites and amorphous Si3N4, and to a smoother surface morphology. While the solid solution Ti0.75Al0.25N film had superior oxidation resistance up to around 700, the composite Ti-Al-Si-N film showed further enhanced oxidation resistance. Both Al2O3 and SiO2 layers played roles as a barrier against oxygen diffusion for the quaternary Ti-Al-Si-N film, whereas only the Al2O3 oxide layer formed at surface did a role for the Ti-Al-N film. Oxidation behavior and mechanical stability of the films after oxidation were compared between two films using instrumental analyses such as XRD, GDOES, XPS, and scratch test.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 118)

Pages:

317-322

Citation:

Online since:

December 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. -D. Münz, J. Vac. Sci. Technol. A (4) (1986), p.2717.

Google Scholar

[2] H.A. Jehn, S. Hofmann, W.D. Münz, Thin Solid Films Vol. 153 (1987), p.45.

Google Scholar

[3] D. McIntyre, J.E. Greene, G. Håkansson, J. -E. Sundgren, W. -D. Münz, J. Appl. Phys. Vol. 67 (3) (1990), p.1542.

Google Scholar

[4] Y. Tanaka, T.M. Gur, M. Kelly, S.B. Hagstrom, T. Ikeda, K. Wakihira, H. Satoh, J. Vac. Sci. Technol. A 10 (1992), p.1749.

Google Scholar

[5] C.W. Kim, K.H. Kim, Thin Solid Films Vol. 307 (1997), p.113.

Google Scholar

[6] S. PalDey, S.C. Deevi, Mater. Sci. Engineering A Vol. 342 (2003), p.58.

Google Scholar

[7] S. Vepřek, S. Reiprich, Thin Solid Films Vol. 268 (1995), p.64.

Google Scholar

[8] J. Patscheider, T. Zehnder, M. Diserens, Surf. Coat. Technol. Vol. 146-147 (2001), p.201.

Google Scholar

[9] S.H. Kim, J.K. Kim, K.H. Kim, Thin Solid Films Vol. 420-421 (2002), p.360.

Google Scholar

[10] E. -A. Lee, K.H. Kim, Thin Solid Films Vol. 420-421 (2002), p.371.

Google Scholar

[11] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Rivière, A. Cavaleiro, E. Alves, Surf. Coat. Technol. Vol. 133-134 (2000).

DOI: 10.1016/s0257-8972(00)00947-6

Google Scholar

[12] J.B. Choi, K. Cho, Y. Kim, K.H. Kim, P.K. Song, Jpn. J. Apply. Phys. Vol. 42 (2003), p.6556.

Google Scholar

[13] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, E. Alves, Thin Solid Films Vol. 398-399 (2001), p.391.

DOI: 10.1016/s0040-6090(01)01348-7

Google Scholar

[14] Y. Tanaka, N. Ichimiya, Y. Onishi, Y. Yamada, Surf. Coat. Technol. Vol. 146 (2001), p.215.

Google Scholar

[15] I. -W. Park, S.R. Choi, M. -H. Lee, K.H. Kim, J. Vac. Sci. Technol. A 21(4) (2003), p.895.

Google Scholar

[16] A. Vennemann, H. -R. Stock, J. Kohlscheen, S. Rambadt, G. Erkens, Surf. Coat. Technol. Vol. 174-175 (2003), p.408.

DOI: 10.1016/s0257-8972(03)00407-9

Google Scholar

[17] F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, J.C. Soares, Surf. Coat. Technol. Vol. 98 (1998), p.912.

Google Scholar

[18] S. Christiansen, M. Albrecht, H.P. Strunk, S. Vepřek, J. Vac. Sci. Technol. B 16 (1998), p.19.

Google Scholar

[19] M. Diserens, J. Patscheider, F. Lévy, Surf. Coat. Technol. Vol. 108-109 (1998), p.241.

Google Scholar

[20] J. Chastain (Ed. ), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, (1992), in press.

Google Scholar

[21] Y.S. Li, S. Shimada, H. Kiyono, A. Hirose, Acta Materialia. In Press (2006).

Google Scholar

[22] V. Bellido-González, N. Stefanopoulos, F. Deguilhen, Surf. Coat. Technol. Vol. 74-75 (1995), p.884.

Google Scholar