The Properties of Heavily Al-Doped ZnO Films by Simultaneous rc and dc Magnetron Sputtering

Article Preview

Abstract:

A radio frequency power (rf) was supplied to ZnO target, and a direct current (dc) power was supplied to Al target for the preparation of heavily Al-doped ZnO (ZnO:Al) films. The advantage of this kind of deposited method is that the Al content could be changed in a wide range. The ZnO:Al films prepared at different dc powers showed different surface morphologies, and corresponded to the different surface roughness. The ZnO:Al films prepared at high dc powers showed the amorphous structures, and resulted in very high resistivity. The resistivity of ZnO:Al film prepared at dc power of 40W was lower (8.52×10-3 -cm). It was mainly due to the relatively higher mobility, which probably resulted from the relatively low surface roughness, and corresponded to the surface morphology in the shape of cobblestone. In addition, the ZnO:Al films prepared at different dc powers showed different optical properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 118)

Pages:

305-310

Citation:

Online since:

December 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ma. Jin, Ji. Feng, Zhang De-heng, Ma Hong- lei, Li Shu-ying, Thin Solid Films 357, 98 (1999).

DOI: 10.1016/s0040-6090(99)00357-0

Google Scholar

[2] D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. 7, 96 (1969).

Google Scholar

[3] W. Tang, D. C. Cameron, Thin Solid Films 238, 83 (1994).

Google Scholar

[4] I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, W. Fuhs, Thin Solid Films 330, 108 (1998).

DOI: 10.1016/s0040-6090(98)00608-7

Google Scholar

[5] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, Thin Solid Films 280, 20 (1996).

Google Scholar

[6] Y.J. Kim, H.J. Kim, Materials Letters 41, 159 (1999).

Google Scholar

[7] J. W. Christian, The Theory of Transformation in Metals and Alloys, p.418, Pergamon Press, U.K. (1975).

Google Scholar

[8] Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc. 79 (4), 825 (1996).

Google Scholar

[9] F. Paraguay D., W. Estrada L., D.R. Acosta N., E. Andrade, M. Miki-Yoshida, Thin Solid Films 350, 192 (1999).

DOI: 10.1016/s0040-6090(99)00050-4

Google Scholar

[10] M. Ohring, The Materials Science of Thin Films, p.517, Academic Press, San Diego, CA (1991).

Google Scholar

[11] P. M. Verghese and D. R. Clarke, J. Mater. Res. 14, 1039 (1999).

Google Scholar

[12] M. Ohring, The Materials Science of Thin Films, p.465 Academic Press, San Diego, CA (1991).

Google Scholar

[13] S. Naguchi and H. Sakata, J. Phys. D 13, 1129 (1980).

Google Scholar

[14] G. Sanon, R. Rup, A. Mansingh, Thin Solid Films 190, 287 (1990).

DOI: 10.1016/0040-6090(89)90918-8

Google Scholar

[15] Su-Shia Lin, J.L. Huang, P. Šajgalik, Surface And Coating Technology, 185/2-3, 254 (2004).

Google Scholar

[16] T. Schuler, M.A. Aegerter, Thin Solid Films 351, 125 (1999).

Google Scholar

[17] M. Ohring, The Materials Science of Thin Films, p.457, Academic Press, San Diego, CA (1991).

Google Scholar

[18] Y. Igasaki and H. Saito, Thin Solid Films 199, 223 (1991).

Google Scholar

[19] K. H. Kim, K. C. Park and D. Y. Ma, J. Appl. Phys. 81, 7764 (1997).

Google Scholar

[20] S. Ghosh, A. Sarkar, S. Bhattacharya, S. Chaudhuri, A.K. Pal, J. Crystal Growth, 108, 534 (1991).

Google Scholar

[21] L.J. Meng, M.P. dos Santos, Thin Solid Films 322, 56 (1998).

Google Scholar

[22] S. S. Lin, J. L. Huang, and D. F. Lii, Surface and Coatings Technology, 176, 173 (2004).

Google Scholar