The Properties of Heavily Al-Doped ZnO Films by Simultaneous rc and dc Magnetron Sputtering

Abstract:

Article Preview

A radio frequency power (rf) was supplied to ZnO target, and a direct current (dc) power was supplied to Al target for the preparation of heavily Al-doped ZnO (ZnO:Al) films. The advantage of this kind of deposited method is that the Al content could be changed in a wide range. The ZnO:Al films prepared at different dc powers showed different surface morphologies, and corresponded to the different surface roughness. The ZnO:Al films prepared at high dc powers showed the amorphous structures, and resulted in very high resistivity. The resistivity of ZnO:Al film prepared at dc power of 40W was lower (8.52×10-3 -cm). It was mainly due to the relatively higher mobility, which probably resulted from the relatively low surface roughness, and corresponded to the surface morphology in the shape of cobblestone. In addition, the ZnO:Al films prepared at different dc powers showed different optical properties.

Info:

Periodical:

Solid State Phenomena (Volume 118)

Edited by:

Jang Hyun Sung, Chan Gyu Lee, Yong Zoo You, Young Kook Lee and Jae Young Kim

Pages:

305-310

DOI:

10.4028/www.scientific.net/SSP.118.305

Citation:

S. S. Lin and J. L. Huang, "The Properties of Heavily Al-Doped ZnO Films by Simultaneous rc and dc Magnetron Sputtering", Solid State Phenomena, Vol. 118, pp. 305-310, 2006

Online since:

December 2006

Export:

Price:

$38.00

[1] Ma. Jin, Ji. Feng, Zhang De-heng, Ma Hong- lei, Li Shu-ying, Thin Solid Films 357, 98 (1999).

DOI: 10.1016/s0040-6090(99)00357-0

[2] D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. 7, 96 (1969).

[3] W. Tang, D. C. Cameron, Thin Solid Films 238, 83 (1994).

[4] I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, W. Fuhs, Thin Solid Films 330, 108 (1998).

DOI: 10.1016/s0040-6090(98)00608-7

[5] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, Thin Solid Films 280, 20 (1996).

[6] Y.J. Kim, H.J. Kim, Materials Letters 41, 159 (1999).

[7] J. W. Christian, The Theory of Transformation in Metals and Alloys, p.418, Pergamon Press, U.K. (1975).

[8] Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc. 79 (4), 825 (1996).

[9] F. Paraguay D., W. Estrada L., D.R. Acosta N., E. Andrade, M. Miki-Yoshida, Thin Solid Films 350, 192 (1999).

[10] M. Ohring, The Materials Science of Thin Films, p.517, Academic Press, San Diego, CA (1991).

[11] P. M. Verghese and D. R. Clarke, J. Mater. Res. 14, 1039 (1999).

[12] M. Ohring, The Materials Science of Thin Films, p.465 Academic Press, San Diego, CA (1991).

[13] S. Naguchi and H. Sakata, J. Phys. D 13, 1129 (1980).

[14] G. Sanon, R. Rup, A. Mansingh, Thin Solid Films 190, 287 (1990).

[15] Su-Shia Lin, J.L. Huang, P. Šajgalik, Surface And Coating Technology, 185/2-3, 254 (2004).

[16] T. Schuler, M.A. Aegerter, Thin Solid Films 351, 125 (1999).

[17] M. Ohring, The Materials Science of Thin Films, p.457, Academic Press, San Diego, CA (1991).

[18] Y. Igasaki and H. Saito, Thin Solid Films 199, 223 (1991).

[19] K. H. Kim, K. C. Park and D. Y. Ma, J. Appl. Phys. 81, 7764 (1997).

[20] S. Ghosh, A. Sarkar, S. Bhattacharya, S. Chaudhuri, A.K. Pal, J. Crystal Growth, 108, 534 (1991).

[21] L.J. Meng, M.P. dos Santos, Thin Solid Films 322, 56 (1998).

[22] S. S. Lin, J. L. Huang, and D. F. Lii, Surface and Coatings Technology, 176, 173 (2004).

In order to see related information, you need to Login.