Synthesis and Characterization of Ti-Cx-N1-x Coatings Prepared by Arc Ion Plating

Article Preview

Abstract:

Ternary Ti-Cx-N1-x coatings were deposited on stainless steel substrates by arc ion plating (AIP) technique using Ti target at the temperature of 300 with a negative substrate bias voltage of -25 V. The carbon content in Ti-Cx-N1-x coatings linearly increased with increasing CH4/(CH4+N2) gas flow ratio at a constant arc current of 60 A. The microstructure and mechanical properties such as micro-hardness and average friction coefficient of Ti-Cx-N1-x coatings were investigated as a function of carbon content. As the carbon content in Ti-Cx-N1-x coatings increased, the microhardness values of Ti-Cx-N1-x coatings increased from 20 GPa for TiN coatings and reached the maximum value of approximately 32 GPa at x=0.52 in Ti-Cx-N1-x coatings. The variation of microhardness of Ti-Cx-N1-x coatings had a relationship with the change of residual stress. The average friction coefficient of Ti-Cx-N1-x coatings largely decreased with increasing carbon content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 118)

Pages:

311-316

Citation:

Online since:

December 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Hogmark, S. Jacobson, and M. Larsson, Wear Vol. 246 (2000) p.20.

Google Scholar

[2] L. Cunha, M. Andritschky, L. Rebouta, k. Pischow, Surf. Coat. Technol. Vol 116-119 (1999) p.1152.

Google Scholar

[3] G. Soto, Applied Surface Science Vol. 230 (2004) p.254.

Google Scholar

[4] E. Ertuerk, O. Knotek, W. Bergmer, H-G. Prengel, Surf. Coat. Technol. Vol. 46 (1991) p.39.

Google Scholar

[5] J.M. Larkner, W. Waldhauser, R. Ebner, Surf. Coat. Technol. Vol. 188-189 (2004) p.519.

Google Scholar

[6] A. Larsson, S. Ruppi, Thin Solid Films Vol. 420 (2002) p.203.

Google Scholar

[7] A.M. Peters, M. Nastasi, Vacumm Vol. 67 (2002) p.203.

Google Scholar

[8] K. -T. Rie, J. Whole, Surf. Coat. Technol. Vol. 112 (1999) p.226.

Google Scholar

[9] S.J. Bull, D.G. Bhat, M.H. Staia, Surf. Coat. Technol. Vol. 163-164 (2003) p.499.

Google Scholar

[10] H.K. Tonshoff, C. Blawit, Surf. Coat. Technol. Vol. 93 (1997) p.119.

Google Scholar

[11] D. Martínez. -Martínez, J.C. Sánchez-López, T.C. Rojas, A. Fernández, P. Eaton, M. Belin, Thin Solid Films Vol. 472 (2005) p.64.

DOI: 10.1016/j.tsf.2004.06.140

Google Scholar

[12] M. Sakaki, T. Sakakibara, IEEE Trans. Plasma Sci. Vol. 22 (1994) p.1049.

Google Scholar

[13] J. Musil, J. Vykocil, S. Kadlec, Physics of thin films, in:M. H Fancombe, J.L. Vossen (Eds. ), Mechanic and Dielectric Properties, Vol. 17, Academic Press, San Diego, 1993, P. 79. (a) (b) 300� 300� (a) (b) 300� 300�.

Google Scholar

[14] S. J. Bull, D.G. Bhat, M.H. Staia, Surf. Coat. Technol. Vol 163-164 (2003) p.507.

Google Scholar

[15] S.A. Brenner and S. Senderoff, J. Res. Bur. Stand. 42 (1949) 105.

Google Scholar

[16] L. Karlsson, L. Hultman, M.P. Johnsson, J. -E. Sundgren, H. Ljungcrantz, Surf. Coat. Technol. Vol. 126 (2000) p.1.

Google Scholar

[17] S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi, J. Dian, Surf. Coat. Technol. Vol. 86-87 (1996) p.394.

Google Scholar

[18] H. Oettel, R. Wiedemann, S. Preiβler, Surf. Coat. Thechnol. Vol. 74-75 (1995) p.273.

Google Scholar

[19] I. Petrov, P. Losbichler, D. Bergstrom. J.E. Greene, W. -D. Münz. T. Hurkmans. Thin Solid Films Vol. 302 (1997) p.179.

DOI: 10.1016/s0040-6090(96)09524-7

Google Scholar

[20] L. Karlsson, L. Hultman, J. -E. Sundgren, Surf. Coat. Thechnol. Vol. 126 (2000) p.1.

Google Scholar

[21] L. Karlsson, L. Hultman, J. -E. Sundgren, Thin Solid Films Vol. 371 (2000) p.167.

Google Scholar

[22] S.W. Huang, M.W. Ng, M. Samandi, M. Brandt, Wear Vol. 252 (2002) p.566.

Google Scholar