Production of Cu-Hf-Ti Bulk Glassy Composites by Mechanical Alloying and Spark-Plasma Sintering

Article Preview

Abstract:

This work reports on the production of Cu-Hf-Ti bulk glassy composites through a powder metallurgical route, i.e. by mechanical alloying and subsequent spark-plasma sintering. Powders of Cu60Hf30Cu10 and Cu60Hf25Ti15 composition were prepared using a high-energy planetary ball-mill. Both alloys nearly showed a fully amorphous structure with only a small fraction of residual HCP Hf grains left after 50 h of milling. Differential scanning calorimetry (DSC) analyses of the milled glassy powder revealed a two-stage crystallization process for both compositions. However, the released crystallization enthalpy was substantially larger for the Cu60Hf25Ti15 alloy than for the Cu60Hf30Ti10 alloy, suggesting that the former comprises a higher fraction of the amorphous phase than the latter. Both powders showed distinct glass-transition with a large super-cooled liquid region. Consolidation of Cu60Hf25Ti15 powder was carried out by means of spark-plasma sintering at applied pressures of 200 and 500 MPa, choosing a sintering temperature within the super-cooled liquid region (T = 753 K). The sintered compacts exhibited some pores and interparticle boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 118)

Pages:

655-660

Citation:

Online since:

December 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: Acta Mater. Vol. 49 (2001), p.2645.

Google Scholar

[2] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: J. Non-Cryst. Solids Vol. 304 (2002), p.200.

Google Scholar

[3] J. Saida, T. Osuna, M. Ohnuma, E. Matsubara and A. Inoue: Sci. Technol. Adv. Mater. Vol. 4 (2003), p.311.

Google Scholar

[4] C. C. Koch, O. B. Cavin, G. McKamey and J. O. Scarborough: Appl. Phys. Lett. Vol. 43 (1983) p.1017.

Google Scholar

[5] I. Börner and J. Eckert: Scripta Mater. Vol. 45 (2003), p.237.

Google Scholar

[6] P. Y. Lee, C. J. Yao, J. S. Chen, L. Y. Wang, R. R. Jeng and Y. L. Lin: Mater. Sci. Eng. A Vol. 375-377 (2004), p.829.

Google Scholar

[7] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto: Appl. Phys. Lett. Vol. 67 (1995), p. (2008).

Google Scholar

[8] L. L. Ye, Z. G. Liu, K. Raviprasad, M. X. Quan, M. Umemoto, Z. Q. Hu: Mater. Sci. Eng. A Vol. 241 (1998), p.290.

Google Scholar

[9] D. J. Sordelet, E. Rozhkova, M. F. Besser, M. J. Kramer: J. Non-Cryst. Solids Vol. 317 (2003), p.137.

Google Scholar

[10] H. J. Kim, J. K. Lee, S. Y. Shin, H. G. Jeong, D. H. Kim, J. C. Bae: Intermetallics Vol. 12 (2004), p.1109.

Google Scholar

[11] M. Tokita: J. Soc. Powder Technol. Jpn. Vol. 30 (1995), p.790.

Google Scholar

[12] M. L. Trudeau, R. Schulz, D. Dussault and A. van Neste: Phys. Rev. Lett. Vol. 64 (1990), p.99.

Google Scholar

[13] Y. He, G. J. Shiftlet, S. J. Poon, Acta Metall. Mater. 43 (1995) 83.

Google Scholar

[14] P. P. Choi, Y. S. Kwon, I. Povstugar, E. P. Yelsukov and J. S. Kim: submitted to Mater. Sci. Eng. A.

Google Scholar