Molecular Dynamics Simulation of the Solidification of Liquid Nickel Nanowires

Article Preview

Abstract:

Molecular dynamics simulation of the solidification behavior of liquid nickel nanowires has been carried out based on the embedded atom potential with different cooling rates. The nanowires constructed with a face-centered cubic structure and a one-dimensional (1D) periodical boundary condition along the wire axis direction. It is found that the final structure of Ni nanowires strongly depend on the cooling rates during solidification from liquid. With decreasing cooling rates the final structure of the nanowires varies from amorphous to crystalline via helical multi-shelled structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

1053-1056

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kondo and K. Takayanagi: Phys. Rev. Lett. Vol. 79 (1997), p.3455.

Google Scholar

[2] H. Ohnishi, Y. Kondo and K. Takayanagi: Nature Vol. 395 (1998), p.780.

Google Scholar

[3] Y. Kondo and K. Takayanagi: Science Vol. 289 (2000), p.606.

Google Scholar

[4] A.I. Yanson, G. Rubio Bollinger, H.E. van den Brom, N. Agraït, J.M. van Ruitenbeek: Nature Vol. 395 (1998), p.783.

DOI: 10.1038/27405

Google Scholar

[5] I. Lisiecki, A. Filankembo, H. Sack-Kongehl, K. Weiss, M. -P. Pileni and J. Urban: Phys. Rev. B Vol. 61 (2000), p.4968.

DOI: 10.1103/physrevb.61.4968

Google Scholar

[6] W.S. Yun, J. Kim, K.H. Park, J.S. Ha, Y.J. Ko, K. Park, S.K. Kim, Y.J. Doh, H.J. Lee, J.P. Slavetat and László Forró: J. Vac. Sci. Tehcnol. A Vol. 18 (2000), p.1329.

Google Scholar

[7] J. -L. Lin, D.Y. Petrovykh, A. Kirakosian, H. Rauscher, F.J. Himpsel and P.A. Dowben: Appl. Phys. Lett. Vol. 78 (2001), p.829.

DOI: 10.1063/1.1345830

Google Scholar

[8] B.H. Hong, S.C. Bae, C. -W. Lee, S. Jeong and K.S. Kim: Science Vol. 294 (2001), p.348.

Google Scholar

[9] K. -B. Lee, S. -M. Lee and J.W. Cheon: Adv. Mater. Vol. 13 (2001), p.517.

Google Scholar

[10] Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, K. Takayanagi and Y. Kondo: Phys. Rev. B Vol. 65 (2002), p.121401.

Google Scholar

[11] G. Bilalbegovié: Phys. Rev. B Vol. 58 (1998), p.15412.

Google Scholar

[12] J.A. Torres, E. Tosatti, A. Dal Corso, F. Ercolessi, J.J. Kohanoff, F.D. Di Tolla and J.M. Soler: Surf. Sci. Vol. 426 (1999), p. L441.

DOI: 10.1016/s0039-6028(99)00333-7

Google Scholar

[13] G. Bilalbegovié: Solid State Commun. Vol. 115 (2000), p.73.

Google Scholar

[14] G. Bilalbegovié: Comput. Mater. Sci. Vol. 18 (2000), p.333.

Google Scholar

[15] E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso and F.D. Di Tolla: Science Vol. 291 (2001), p.288.

DOI: 10.1126/science.291.5502.288

Google Scholar

[16] B.L. Wang, S.Y. Yin, G.H. Wang, A. Buldum and J.J. Zhao: Phys. Rev. Lett. Vol. 86 (2001), p. (2046).

Google Scholar

[17] E.Z. da Silva, Antônio J.R. da Silva and A. Fazzio: Phys. Rev. Lett. Vol. 87 (2001), p.256102.

Google Scholar

[18] J.K. Diao, K. Gall and M. L. Dunn: J. Mech. Phys. Solids Vol. 52 (2004), p. (1935).

Google Scholar

[19] J.W. Kang and H.J. Hwang: J. Phys.: Condens. Matter Vol. 14 (2002), p.2629.

Google Scholar

[20] J.W. Kang, J.J. Seo and H.J. Hwang: J. Phys.: Condens. Matter Vol. 14 (2002), p.8997.

Google Scholar

[21] J.W. Kang and H.J. Hwang: Comput Mater Sci. Vol. 27 (2003), p.305.

Google Scholar

[22] O. Gülseren, F. Ercolessi and E. Tosatti: Phys. Rev. Lett. Vol. 80 (1998), p.3775.

Google Scholar

[23] F. Di Tolla, A. Dal Corso, J.A. Torres and E. Tosatti: Surf. Sci. Vol. 456 (2000), p.947.

DOI: 10.1016/s0039-6028(00)00282-x

Google Scholar

[24] O. Gülseren, F. Ercolessi and E. Tosatti: Phys. Rev. B Vol. 51 (1995), p.7377.

Google Scholar

[25] G.M. Finbow, R.M. Lynden-Bell, and I.R. McDonald: Mol. Phys. Vol. 92 (1997), p.705.

Google Scholar

[26] B.L. Wang, S.Y. Yin, G.H. Wang and J.J. Zhao: J. Phys.: Condens. Matter Vol. 13 (2001), p. L403.

Google Scholar

[27] B.L. Wang, G.H. Wang, X.S. Chen and J.J. Zhao: Phys. Rev. B Vol. 67 (2003), p.193403.

Google Scholar

[28] B.L. Wang, G.H. Wang and J.J. Zhao: Phys. Rev. B Vol. 65 (2002), p.235406.

Google Scholar

[29] B.L. Wang, G.H. Wang, Y. Ren, H.Q. Sun, X.S. Chen and J.J. Zhao: J. Phys.: Condens. Matter Vol. 15 (2003), p.2327.

Google Scholar

[30] H. Li, F. Pederiva, G.H. Wang and B.L. Wang: Chem. Phys. Lett. Vol. 381 (2003), p.94.

Google Scholar

[31] H.Y. Zhang, X. Gu, X.H. Zhang, X. Ye and X.G. Gong: Phys. Lett. A Vol. 331 (2004), p.332.

Google Scholar

[32] B.L. Wang, X.S. Chen, G.B. Chen, G.H. Wang and J.J. Zhao: Solid State Commun. Vol. 129 (2004), p.25.

Google Scholar

[33] L. Qi, H.F. Zhang and Z.Q. Hu: Intermetallics Vol. 12 (2004), p.1191.

Google Scholar

[34] H. Li, F. Ding, G.H. Wang, J. Zhang and X.F. Bian: Solid State Commun. Vol. 120 (2001), p.41.

Google Scholar

[35] J.H. Shim, S.C. Lee, B.J. Lee, J.Y. Suh and Y.W. Cho: J. Crystal Growth Vol. 250 (2003), p.558.

Google Scholar