The Size and Temperature Effects of Coercivity for the Magnetic Nanowire: Monte Carlo Simulation

Article Preview

Abstract:

Based on Monte Carlo simulation we study the coercivity of iron nanowire deposited in chemically widened anodic aluminum oxide films. The coercivity is found to depend on the diameter and aspect ratio of the nanowire, and it decreases with increasing nanowire diameter, which is consistent with the experimental result. Two kinds of discretization cells regular global-shaped and regular cubic-shaped are used as minimum element. The simulation result reveals that the regular global-shaped discretization cell allows for more accurate calculated result while comparing to the experimental result than the cubic-shaped discretization cell does. The simulated coercivity as a function of temperature with different diameters shows that the data can be described well by the T-c power-law, and the diameter dependence of the exponent c displays a maximum peak.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

1081-1084

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fert and L. Piraux: J. Magn. Magn. Mater. Vol. 200 (1999), p.338.

Google Scholar

[2] P.M. Paulus et al.: J. Magn. Magn. Mater. Vol. 224 (2001), p.180.

Google Scholar

[3] X.Y. Zhang, G.H. Wang, Y.F. Chan et al.: Appl. Phys. Lett. Vol. 83 (2003), p.3341.

Google Scholar

[4] C. Seberino and H. Bertram: J. Appl. Phys. Vol. 85 (1999), p.5543.

Google Scholar

[5] R. Ferre, K. Ounadjela, J. George, L. Piraux and S. Dubois: Phys. Rev. B Vol. 56 (1997), p.14066.

Google Scholar

[6] D. Hinzke and U. Nowak: J. Magn. Magn. Mater. Vol. 221 (2000), p.365.

Google Scholar

[7] Riccardo Hertel: J. Appl. Phys. Vol. 90 (2001), p.5752.

Google Scholar

[8] D. AlMawlawi, N. Coombs and M. Moskvits: J. Appl. Phys. Vol. 70 (1991), p.4421.

Google Scholar

[9] K. Binder, et al.: Monte Carlo Simulation in Statistical Physics (Springer, Berlin 1992).

Google Scholar

[10] Zhigao Huang, Zhigao Chen, Kun Peng, et. al: Phys. Rev. B Vol. 69 (2004), p.094420.

Google Scholar

[11] Zhigao Huang et al.: Eur. Phys. J. B Vol. 37 (2004), p.177.

Google Scholar

[12] D.J. Sellmyer, M. Zheng and R. Skomski: J. Phys.: Condens. Matter. Vol. 13 (2001), p. R433.

Google Scholar

[13] H. Zeng et al.: Phys. Rev. B Vol. 65 (2002), p.134426.

Google Scholar

[14] S. Wirth et al.: Phys. Rev. B Vol. 57 (1998), p. R14028.

Google Scholar

[15] N. Grobert, et al.: Appl. Phys. Lett. Vol. 75 (1999), p.3363.

Google Scholar

[16] B.K. Chakrabarti and M. Acharyya: Rev. Mod. Phys. Vol. 71 (1998), p.847.

Google Scholar

[17] Zhigao Huang et al.: Eur. Phys. J. B Vol. 38 (2005) (in press).

Google Scholar