The Influences of Size and Anisotropy Strength on Hysteresis Scaling for Anisotropy Heisenberg Multilayer Films

Article Preview

Abstract:

In this paper, we simulate the magnetization dynamic processes of the multilayer films, and calculate their hysteresis loop areas using Monte Carlo method. The simulated results indicate that, the size and anisotropy strength of the anisotropy multilayer films influence evidently the dynamic phase transition, and the phase transition temperature increases with enhancing values of the anisotropy constant and layer thickness. It is also found that, with increasing number of layers of films, the value of α decreases, while the magnitudes of β and γ increase. On the contrary, with increasing anisotropy strength, the value of α increases, while the magnitudes of β and γ reduce.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

1085-1088

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.K. Chakrabarti and M. Acharyya: Rev. Mod. Phys., Vol. 71(1998), P. 847.

Google Scholar

[2] H. Jang, M. J. Grimson, and T. B. Woolf: Phys. Rev. E, Vol. 70(2004), P. 047101.

Google Scholar

[3] H. Jang, M. J. Grimson, and C. K. Hall: Phys. Rev. B Vol. 67(2003), p.094411.

Google Scholar

[4] M. Acharyya: Phys. Rev. E Vol. 69(2004), p.027105.

Google Scholar

[5] Zhigao Huang, Fengming Zhang, Zhigao Chen, Youwei Du: Eur. Phys.J. B (in press).

Google Scholar

[6] Zhigao Huang, Zhigao Chen, Fengming Zhang, Youwei Du: Phys. Lett. A Vol. 338(2005), p.485.

Google Scholar

[7] Y.L. He and G.C. Wang: Phys. Rev. Lett. Vol. 70(1993), p.2336.

Google Scholar

[8] B.C. Choi, W.Y. Lee, A. Samad and J.A.C. Bland: Phys. Rev. B Vol. 60(1999), p.11906.

Google Scholar

[9] Q. Jiang, H.N. Yang and G.C. Wang: Phys. Rev. B Vol. 52(1995), p.14911.

Google Scholar

[10] Jih-Shin Suen, M.H. Lee, G. Teeter and J.L. Erskine: Phys. Rev. B Vol. 59(1999), p.4249.

Google Scholar

[11] W.Y. Lee, B. Ch. Choi, Y.B. Xu and J.A.C. Bland: Phys. Rev. B Vol. 60(1999), p.10216.

Google Scholar

[12] Jih-Shin Suen and J.L. Erskine: Phys. Rev. Lett. Vol. 78(1997), p.3567.

Google Scholar

[13] Heng Lai, Zhigao Huang et al.: Materials Science Forum Vols. 475-479 (2005), p.2263.

Google Scholar

[14] K. Binder, D.W. Heermann: Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1992 ).

Google Scholar

[15] Zhigao Huang, Zhigao Chen, Fengming Zhang, Youwei Du: Eur. Phys.J. B Vol. 37(2004), p.177.

Google Scholar

[16] Zhigao Huang, Youwei Du: Phys. Lett. A Vol. 300(2002), p.641.

Google Scholar

[17] Zhigao Huang et al.: Phys. Rev. B Vol. 69(2004), p.094420.

Google Scholar

[18] D. Hinzke, U. Nowak: Comp. Phys. Commun. Vol. 121-122(1999), p.334.

Google Scholar

[19] M. Acharyya and B.K. Chakrabarti: Phys. Rev. B Vol. 52(1995), p.6550.

Google Scholar

[20] C.N. Luse and A. Zangwill: J. Appl. Phys. Vol. 79(1996), p.4942.

Google Scholar