Synthesis and Characterization of In-Doped SnO2 (ITO) Nanowires

Article Preview

Abstract:

Large-scale synthesis of In-doped SnO2 (ITO) nanowires was achieved by direct thermal evaporation of a mixture of Sn and In powders at 900°C in an Argon atmosphere. Scanning electron microscopy and transmission electron microscopy observations show that ITO nanowires have diameter ranging from 20 to 100 nm and lengths up to several tens of micrometers. By altered the reaction temperature, we find that the temperature of the reaction is the critical factor for the morphologies and sizes of the ITO nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

209-214

Citation:

Online since:

March 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.T. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res. 32 (1999) , p.435.

Google Scholar

[2] Z.W. Pan, Z.R. Dai and Z.L. Wang, Science. 291 (2001), p. (1947).

Google Scholar

[3] X.S. Fang, C.H. Ye, L.D. Zhang, Y. Li and Z.D. Xiao, Chem. Lett. 34 (2005), p.436.

Google Scholar

[4] J.Y. Li, X.L. Chen, Z.Y. Qiao, M. He and H. Li, J. Phys.: Condens. Matter. 13 (2001), p. L937.

Google Scholar

[5] J.Y. Lao, J. Y. Huang, D.Z. Wang and Z.F. Ren, Adv. Mater. 16 (2004), p.65.

Google Scholar

[6] X.S. Fang, C.H. Ye, T. Xie, G. He, Y.H. Wang and L. D. Zhang, Appl. Phys. A. 80 (2005), p.423.

Google Scholar

[7] J.L. Gole, Z.L. Wang, Nano. Lett. 1 (2001), p.449.

Google Scholar

[8] Z.R. Dai, Z.W. Pan and Z.L. Wang, Adv. Funct. Mater. 13 (2003), p.9.

Google Scholar

[9] X.S. Fang, C.H. Ye, X.S. Peng, Y.H. Wang, Y.C. Wu and L. D. Zhang, J. Mater. Chem. 13 (2003), p.3040.

Google Scholar

[10] H.Q. Yan, R. He, J. Pham and P. D. Yang, Adv. Mater. 15 (2003), p.402.

Google Scholar

[11] X.S. Peng, G.W. Meng, X.F. Wang, Y.W. Wang, J. Zhang, X. Liu and L.D. Zhang, Chem. Mater. 14 (2002), p.4490.

Google Scholar

[12] P. Nguyen, H. T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. Mcnell and M. Meyyappan, Nano. Lett. 3 (2003), p.925.

Google Scholar

[13] Y.Q. Chen, J. Jiang, B. Wang and J. Q. Hou, J. Phys. D: Appl. Phys. 37 (2004), p.3319.

Google Scholar

[14] H.Y. Peng, Z.W. Pan, L. Xu, X.H. Fan, N. Wang, C.S. Lee and S. T. Lee, Adv. Mater. 13 (2001), p.317.

Google Scholar

[15] Z.W. Pan, Z.R. Dai, L. Xu, S.T. Lee and Z.L. Wang, J. Phys. Chem. B 105 (2001), p.2507.

Google Scholar

[16] X.S. Fang, C.H. Ye, X.S. Peng, Y.H. Wang, Y.C. Wu and L.D. Zhang, Adv. Funct. Mater. 15 (2005), p.63.

Google Scholar

[17] R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4 (1964), p.89.

Google Scholar

[18] P.D. Yang and C.M. Lieber, J. Mater. Res. 12 (1997), p.2981.

Google Scholar

[19] R.Q. Zhang, Y. Lifshitz and S.T. Lee, Adv. Mater. 15 (2003), p.635.

Google Scholar

[20] G. Frank, L. Brock and H.D. Bausen, J. Cryst. Growth. 36 (1976), p.179.

Google Scholar