Synthesis of Locally-Ordered Carbon Nanotube Arrays from Patterned Catalyst by Self-Assembly Technique

Article Preview

Abstract:

Site-selective growth of multi-walled carbon nanotubes (MWCNTs) from an iron oxide nanoparticle catalyst patterned by drying-mediated self-assembly technique is present. The ethanol solution of the iron nitrate was employed as catalyst precursor. The catalyst precursor was mounted on silicon wafer by dip-coating. After evaporation of solvent at room temperature, the catalyst pattern formed. The catalyst pattern was employed to synthesize carbon nanotube pattern by chemical vapor deposition of ethanol vapor after oxidation of iron nitrate. The patterned array of MWCNTs was obtained with a dot size of around 5 'm and the distance of about 25 'm. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

483-486

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Science Vol. 297 (2002), p.787.

Google Scholar

[2] W.A. de Heer, A. Châtelain, and D. Ugarte: Science Vol. 270 (1995), p.1179.

Google Scholar

[3] Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina: Nature (London) Vol. 389 (1997), p.554.

DOI: 10.1038/39221

Google Scholar

[4] Y.H. Lee, Y.T. Jang, D.H. Kim, J.H. Ahn, and B.K. Ju: Adv. Mater. Vol. 13 (2001), p.479.

Google Scholar

[5] Z.F. Ren, Z. P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, and M.A. Reed: Appl. Phys. Lett. Vol. 75 (1999), p.1086.

Google Scholar

[6] S. Huang, L. Dai, and A. W. H. Mau: Adv. Mater. Vol. 14 (2002), p.1140.

Google Scholar

[7] N.R. Franklin, Y. Li, R. J. Chen, A. Javey, and H. Dai: Appl. Phys. Lett. Vol. 79 (2001), p.4571.

Google Scholar

[8] H. Ago, J. Qi, K. Tsukagoshi, K. Murata, S. Ohshima, Y. Aoyagi, and M. Yumura: J. Electroanal. Chem. Vol. 559 (2003), p.25.

Google Scholar

[9] H. Kind, J. M. Bonard, L. Forró, K. Kern, K. Hernadi, L. O. Nilsson, and L. Schlapbach: Langmuir Vol. 16 (2000), p.6877.

DOI: 10.1021/la0001880

Google Scholar

[10] E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus: Nature Vol. 426 (2003), p.271.

Google Scholar

[11] X.P. Zou, H. Abe, T. Shimizu, A. Ando, Y. Nakayama, H. Tokumoto, S.M. Zhu, H.S. Zhou: Physica E Vol. 24 (2004), p.14.

Google Scholar

[12] N.B. Bowden, M. Weck, I.S. Choi and G.M. Whitesides: Acc. Chem. Res. Vol. 34 (2001), p. 231A.

Google Scholar

[13] A. Carré and F. Eustache: Langmuir Vol. 16 (2000), p.2936.

Google Scholar