Effects of O2 and Ar Reactive Ion Etching on the Field Emission Properties of Aligned CuO Nanowire Films

Article Preview

Abstract:

The effects of oxygen (O2) reactive ion etching (RIE) on the field emission (FE) properties of aligned CuO nanowire films are investigated systematically. It is found that the FE performance of the films is largely enhanced after initial exposure to reactive oxygen ions but degrades after extended treatment. As comparison, Ar RIE is also used to treat CuO nanowires, which, however, results in the deterioration of FE properties. The enhanced FE after O2 RIE is attributed to the shaper morphology, cleaner surface and better conductivity. On the other hand, increased work function and non-crystallized surface structure cause the deterioration of FE of CuO nanowires after Ar RIE treatments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

793-796

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. De Jonge and J.M. Bonard: Phil. Trans. R. Soc. Lond. A 362 (2004), 2239.

Google Scholar

[2] D. Banerjee, S.H. Jo and Z.F. Ren: Adv. Mater. 16 (2004), (2028).

Google Scholar

[3] Z. Pan, H. -L. Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. -S. Lee, N. -B. Wong, S. -T. Lee and S. Xie: Adv. Mater. 12 (2000), 1186.

Google Scholar

[4] J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She and Z.L. Wang: Adv. Mater. 15 (2003), 1835.

Google Scholar

[5] L. Vila, P. Vincent, L.D. -De Pra, G. Pirio, E. Minoux, L. Gangloff, S.D. -Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux and P. Legagneu: Nano Lett. 4 (2004), 521.

DOI: 10.1021/nl0499239

Google Scholar

[6] J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu and E. Wang: Small 1 (2005), 310.

Google Scholar

[7] J. Xu, J. Mei, X.H. Huang, X. Li, Z. Li, W. Li and K. Chen: Appl. Phys. A 80 (2005), 123.

Google Scholar

[8] O. Yavas, N. Suzuki, M. Takai, A. Hosono and S. Kawabuchi: Appl. Phys. Lett. 72 (1998), 2797.

DOI: 10.1063/1.121461

Google Scholar

[9] W.M. Tsang, S.P. Wong and J.K.N. Lindner: Appl. Phys. Lett. 84 (2004), 3193.

Google Scholar

[10] W. Yi, T. Jeong, S.G. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J. -B. Yoo and J. Kim: Adv. Mater. 14 (2002), 1464.

Google Scholar

[11] C.Y. Zhi, X.D. Bai, and E.G. Wang: Appl. Phys. Lett. 81 (2002), 1690.

Google Scholar

[12] C. -H. Hsu, H. -C. Lo, C. -F. Chen, C. T. Wu, J. -S. Hwang, D. Das, J. Tsai, L. -C. Chen and K. -H. Chen: Nano Lett. 4 (2004), 471.

Google Scholar

[13] I.W. Rangelow: Microelectronics Engineering 23 (1994), 369.

Google Scholar

[14] F.C.K. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello and S.T. Lee: Appl. Phys. Lett. 75(1999), 1700.

Google Scholar

[15] X.C. Jiang, T. Herricks and Y.N. Xia: Nano Lett. 2 (2002), 1333.

Google Scholar

[16] Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong and C.H. Sow: Nanotechnology 16 (2005), 88.

Google Scholar

[17] Y.W. Zhu, F.C. Cheong, T. Yu, X.J. Xu, C.T. Lim, J.T.L. Thong, Z.X. Shen, C.K. Ong, Y.J. Liu, A.T.S. Wee and C.H. Sow: Carbon 43 (2005), 395.

DOI: 10.1016/j.carbon.2004.09.029

Google Scholar

[18] K.Y. Lim, C.H. Sow, J. Lin, F.C. Cheong, Z.X. Shen, J.T.L. Thong, K.C. Chin and A.T.S. Wee: Adv. Mater. 15 (2003), 300.

DOI: 10.1002/adma.200390072

Google Scholar

[19] R.C. Che, L.M. Peng and M.S. Wang: Appl. Phys. Lett. 85 (2004), 4753.

Google Scholar

[20] Y.Z. Jin, W.K. Hsu, Y.L. Chueh, L.J. Chou, Y.Q. Zhu, K. Brigatti, H.W. Kroto and D.R.M. Walton: Angew. Chem. Int. Ed. 43 (2004), 5670.

DOI: 10.1002/anie.200460447

Google Scholar

[21] W. Hu, M. Matsumura, K. Furukawa and K. Torimitsu: J. Phys. Chem. B 108 (2004), 13116.

Google Scholar

[22] G.V. Chertihin, L. Andrews and C.W. Bauschlicher: J. Phys. Chem. B 101 (1997), 4026.

Google Scholar