Ferroelectric Phase Transition Investigated by Thermal Analysis and Raman Scattering in SrBi2Ta2O9 Nanoparticles

Article Preview

Abstract:

Thermal analysis and Raman spectra were carried out in SrBi2Ta2O9 (SBT) nanoparticles to investigate phase transitions. Two anomalies have been observed in temperature dependence of specific heat for SBT nanoparticles. Under the combination with Raman spectra, it indicates that there exists a new ferroelectric intermediate phase in the phase-transition sequence. So we can conclude that the phase-transition sequence in SBT nanoparticles should be ferroelectric-ferroelectric-paraelectric. Moreover, the size effect was discussed in consideration of inner compressive stress in nanoparticles for this special transition behavior. The calculated results show that the SBT nanoparticles keep the ferroelectricity until the particle size is decreased to 4.2 nm.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

843-846

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Scott and C.A. Paz de Araujo: Science Vol. 246 (1989), p.1400.

Google Scholar

[2] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee and W. Jo: Nature (London) Vol. 401 (1999), p.682.

Google Scholar

[3] C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott and J.F. Scott: Nature (London) Vol. 374 (1995), p.627.

Google Scholar

[4] W.L. Zhong, Y.G. Wang, P.L. Zhang and B.D. Qu: Phys. Rev. B Vol. 50 (1994), p.698.

Google Scholar

[5] H. Huang, C.Q. Sun, T.S. Zhang and P. Hing: Phys. Rev. B Vol. 63 (2001), p.184112.

Google Scholar

[6] Y. Zhou, W. Wang, D.C. Jia and F. Ye: Mater. Chem. Phys. Vol. 77 (2002), p.60.

Google Scholar

[7] A.B. Panda, A. Pathak, M. Nandagoswami and P. Pramanik: Materials Science and Engineering B. Vol. 97 (2003), p.275.

Google Scholar

[8] A. Onodera, T. Kubo, K. Yoshio, S. Kojima and H. Yamashita: Jpn. J. Appl. Phys. Part 1 Vol. 39 (2000), p.5711.

Google Scholar

[9] C.H. Hervoches, J.T.S. Irvine and P. Lightfoot: Phys. Rev. B Vol. 64 (2001), p.100102.

Google Scholar

[10] S. Kojima: J. Phys.: Condens. Matter Vol. 10(1998), p. L327.

Google Scholar

[11] M. Kempa, P. Kužel, S. Kamba, P. Samoukhina, J. Petzelt, A. Garg and Z.H. Barber: J. Phys.: Condens. Matter Vol. 15 (2003), p.8095.

DOI: 10.1088/0953-8984/15/47/012

Google Scholar

[12] S. Kamba, J. Pokorny, V. Porokhonskyy, J. Petzelt, M.P. Moret, A. Garg, Z.H. Barber and R. Zallen: Appl. Phys. Lett. Vol. 81 (2002), p.1056.

DOI: 10.1063/1.1498005

Google Scholar

[13] M.G. Stachiotti, C.O. Rodriguez, C. Ambrosch-Draxl and N.E. Christensen: Phys. Rev. B Vol. 61 (2000), p.14434.

Google Scholar

[14] F. Yan, X.B. Chen, P. Bao and Y.N. Wang: J. Appl. Phys. Vol. 87 (2000), p.1453.

Google Scholar