Tribological Characteristics of Coarse and Ultra-Fine Grained Ferrite-Martensite Dual Phase Steel Fabricated by Equal Channel Angular Pressing

Abstract:

Article Preview

The dual phase steel, which consists of hard martensite islands embedded in a ductile ferrite matrix, is known to possess high strength, toughness, and superior wear resistance. However, the detailed wear mechanism of the steel has not yet been understood thoroughly. In the present study, dry sliding friction and wear characteristics of an ultra-fine grained ferrite-martensite dual phase steel has been investigated at room temperature. Wear tests of the steel were carried out using a pin-on-disk wear tester against an AISI 52100 bearing steel ball at loads ranging from 1N to 10N. Normalizing heat treatment was also performed on the steel to produce a ferrite-pearlite microstructure, and the wear characteristics of the normalized specimen were compared with that of the dual phase steel. The dual phase steel exhibited lower wear rates than the normalized steel, but the steady-state friction coefficients of the two steels were similar. The wear of the dual phase steel proceeded with a tribochemical reaction on the wearing surface accompanied with subsurface strain hardening, which explained the lower wear rate of the steel.

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Edited by:

Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park

Pages:

1389-1392

DOI:

10.4028/www.scientific.net/SSP.124-126.1389

Citation:

Y. S. Kim et al., "Tribological Characteristics of Coarse and Ultra-Fine Grained Ferrite-Martensite Dual Phase Steel Fabricated by Equal Channel Angular Pressing", Solid State Phenomena, Vols. 124-126, pp. 1389-1392, 2007

Online since:

June 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.