EXAFS Analyses on Local Structure of Gallium in Amorphous Selenide Optical Materials Doped with Rare Earths

Article Preview

Abstract:

Ga K-edge EXAFS spectra have been analyzed to elucidate the local coordination structure of Ga in two representative selenide Ge-As-Se and Ge-Sb-Se glasses all doped with Pr. Gallium turned out to be coordinated with 4 Se atoms in its first neighboring shell. This implies that Ga does not follow the 8-N rule associated with the short-range order structures of typical covalent glasses, further indicating there being more ionic-bond nature in the Ga-Se bonds compared to other heteropolar chemical bonds in the selenide glasses. This is decisive for the Pr3+ ions to be incorporated in the selenide glasses. In this case, the GaSe4 units can be electrically neutralized by the doped Pr3+ ions that act as a charge compensator. As such, inside the selenide glasses, distributions of Pr3+ ions and the Ga tetrahedral units are closely correlated. Spectroscopic properties of rare earths embedded in these Ga-containing selenide glasses thus can be explained in connection with the proposed role of Ga.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

1665-1668

Citation:

Online since:

June 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. G. Choi, K. H. Kim, B. J. Park and J. Heo: Appl. Phys. Lett. Vol. 78 (2001), p.1249.

Google Scholar

[2] W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn and Y. G. Choi: ETRI J. Vol. 27 (2005), p.411.

Google Scholar

[3] Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim and J. Heo: J. Non-Cryst. Solids Vol. 278 (2000), p.137.

Google Scholar

[4] B. G. Aitken, C. W. Ponader and R. S. Quimby: C. R. Chimie Vol. 5 (2002), p.865.

Google Scholar

[5] J. H. Song, Y. G. Choi and J. Heo: J. Non-Cryst. Solids Vol. 352 (2006), p.423.

Google Scholar

[6] Y. G. Choi, R. J. Curry, B. J. Park, K. H. Kim, J. Heo and D. W. Hewak: Chem. Phys. Lett. Vol. 403 (2005), p.29.

Google Scholar

[7] A. C. Hannon and B. G. Aitken: J. Non-Cryst. Solids Vol. 256-257 (1999), p.73.

Google Scholar

[8] Y. G. Choi, V. A. Chernov and J. Heo: J. Non-Cryst. Solids Vol. 221 (1997), p.199.

Google Scholar

[9] Y. G. Choi, K. S. Sohn, K. H. Kim and H. D. Park: J. Mater. Res. Vol. 17 (2002), p.31.

Google Scholar

[10] Y. G. Choi, K. H. Kim, Y. S. Han and J. Heo: Chem. Phys. Lett. Vol. 329 (2000), p.370.

Google Scholar

[11] E. A. Stern, M. Newville, B. Ravel, Y. Yacoby and D. Haskel: Physica B Vol. 209 (1995), p.117.

DOI: 10.1016/0921-4526(94)00826-h

Google Scholar

[12] J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky and R. C. Albers: J. Am. Chem. Soc. Vol. 113 (1991), p.5135.

DOI: 10.1021/ja00014a001

Google Scholar

[13] J. M. Holender and M. J. Gillan: J. Non-Cryst. Solids Vol. 205-207 (1996), p.866.

Google Scholar

[14] A. Giridhar and S. Mahadevan: J. Non-Cryst. Solids Vol. 126 (1990), p.161.

Google Scholar

[15] Y. G. Choi, B. J. Park and W. J. Chung: Chem. Phys. Lett. Vol. 395 (2004), p.379.

Google Scholar

[16] L. Pauling: The Chemical Bond (Cornell University, New York, US 1976).

Google Scholar