Analysis on the Martensitic Transformation in the Ti-xNb Alloys Using a Phenomenological Theory

Abstract:

Article Preview

The titanium alloys containing the Nb transition elements have been investigated as the Ni-free shape memory and the biomedical alloys with a low elastic modulus. The mechanical properties of the alloys depended upon the meta-stable phases like the α`, α``, ω. To study the martensitic transformations from the β to α`` or α` the Ti-xNb (x=0 to 40 wt%) alloys were melted into the button type ingots using a VAR, and followed by the water-quenching after the soaking at 1000oC for 2hrs. The crystallography of the martensitic phases in the water-quenched alloys was analyzed using a XRD. The diffraction peaks of the orthorhombic martensites were identified by the crystallographic relationship with the bcc matrix. The lattice parameters of the orthorhombic martensites were varied continuously with the contents of the Nb elements. The martensitic transformations of the alloys were studied using the phenomenological theory of Bowles and Mackenzie.

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Edited by:

Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park

Pages:

1669-1672

DOI:

10.4028/www.scientific.net/SSP.124-126.1669

Citation:

H. W. Jeong et al., "Analysis on the Martensitic Transformation in the Ti-xNb Alloys Using a Phenomenological Theory", Solid State Phenomena, Vols. 124-126, pp. 1669-1672, 2007

Online since:

June 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.