Growth Mode Diagram for the Epitaxial Growth on the Vicinal Surface of Strained Si (001)

Article Preview

Abstract:

We present the linear stability analysis for the epitaxial thin film growth on the vicinal surface of strained Si and the growth mode diagrams of the epitaxial growth under various operation conditions. Competition between step-step elastic interactions and the asymmetry of incorporation of adatoms from the terraces to step edge is considered. Force monopoles at steps and their interaction lead to it on the vicinal surface while kinetic asymmetry of the adatom incorporation at steps due to Ehrlich-Schwoebel barrier prevents the step bunching instability. Growth mode on the vicinal surface is determined by the competition between elastic step-step interactions and Ehrlich-Schwoebel barrier.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

547-550

Citation:

Online since:

June 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London A, 243 (1951) 299.

Google Scholar

[2] J. Villain, and A. Pimpinelli, Physics of Crystal Growth, Cambrige University Press (1998).

Google Scholar

[3] V. I. Marchenko, and A. Y. Parshin, Sov. Phys. JETP., 52 (1980) 129.

Google Scholar

[4] A. F. Andreev, and Y. A. Kosevich, Sov. Phys. JETP., 54 (1981) 761.

Google Scholar

[5] V. M. Kaganer, and K. H. Ploog, Phys. Rev. B, 64 (2001) 205301.

Google Scholar

[6] J. Tersoff and R. M. Tromp, Phys. Rev. Lett., 70 (1993) 2782.

Google Scholar

[7] J. Tersoff, and F. K. LeGoues, Phys. Rev. Lett., 72 (1994) 3570.

Google Scholar

[8] J. Tersoff, Y. H. Phang, Z. Y. Zhang, and M. G. Lagally, Phys. Rev. Lett., 75 (1995) 2730.

Google Scholar

[9] J. Tersoff, Phys. Rev. Lett., 80 (1998) (2018).

Google Scholar

[10] F. Liu, J. Tersoff and M. G. Lagally, Phys. Rev. Lett., 75 (1998) 2730.

Google Scholar

[11] F. Leonard, and J. Tersoff, Appl. phys. Lett., 83 (2003) 72.

Google Scholar

[12] R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37 (1966) 3682; R.L. Schwoebel, J. Appl. Phys. 40 (1969) 614.

Google Scholar

[13] G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44 (1966) 1039.

Google Scholar

[14] F. Liu, and H. Metiu, Phys. Rev. E 49 (1994) 2601.

Google Scholar

[15] P. -R. Cha, K. -H. Hong, D. -H. Yeon, Surf. Sci. Lett., submitted; Ki-Ha Hong, Computational Approach to the Lattice Strain Effects on Epitaxial Growth", Ph.D. Dissertation, Seoul National University, pp.57-62, 2004; Dong-Hee Yeon, "Study on the Step Instabilities mediated by Elastic Interactions between Steps, Ph.D. Dissertation, Seoul National University, pp.69-84, (2004).

Google Scholar

[16] Poon T.W., Yip S., Ho P.S. and Abraban F.F., Phys. Rev. Lett., 65 (1990) 2161; Poon T.W., Yip S., Ho P.S., and Abraban F.F., Phys. Rev. B, 45 (1992) 3521.

DOI: 10.1103/physrevlett.65.2161

Google Scholar

[17] Kim E., Oh C.W., and Lee Y.H., Phys. Rev. Lett., 79 (1997) 4621.

Google Scholar

[18] Tromp R.M. and Markos M., Phys. Rev. Lett. 81 (1998) 1050.

Google Scholar

[19] Mo Y.W., Kleiner J., Webb M.B. and Lagally M.G., Phys. Rev. Lett. 66 (1991) (1998).

Google Scholar

[20] Fuenzalida V., Phys. Rev. B, 44 (1991) 10835.

Google Scholar

[21] Myers-Beaghton A.K. and Vvedensky D.D., Phys. Rev. B, 42 (1990) 5544.

Google Scholar