A Comparative Analysis of Structural Defect Formation in Si+ Implanted and then Plasma Hydrogenated and in H+ Implanted Crystalline Silicon

Article Preview

Abstract:

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been used to compare hydrogen defects formed in p doped [001] oriented Cz silicon samples which are H+ plasma treated , H+ implanted or Si+ implanted + H+ plasma treated. Samples were studied as processed and after annealing at 250°C, 450°C and 600°C. It is found that 1 hour H+ plasma treatment at 250°C produces a low density of large defects (~100 nm) in prefered {111} plans close to the surface. H+ implantation at a dose of 3x1016 cm-2 produces high density of small (~ 20 nm) mostly {100} platelets that after 1 hour annealing at 450°C result in microcrack formation. Lower H+ implantation doses form very few microcracks at this temperature. Silicon implantation with a dose of 1015 cm2 followed by 1 hour H+ plasma treatment at 250°C and 1 hour annealing at 450°C produces similar microstructure and microcracks as the 3x1016 cm2 H+ implantation dose.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

309-314

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Bruel, B. Aspar and A. -J. Auberton-Hervé: Jpn J. Appl. Phys. 36 (1997) 1636.

Google Scholar

[2] A. Y. Usenko and A. G. Ulyashin: Jpn. Appl. Phys., Part 1 41 (2002) 5021.

Google Scholar

[3] P. Chen et. al.: Appl. Phys. Lett. 86 (2005) 031904.

Google Scholar

[4] A. Y. Usenko, W. N. Carr and B. Chen: J. Matr. Sci.: Matr. Electr. Vol. 14 (2003), pp.305-309.

Google Scholar

[5] K. -H. Hwang E. Yoon, K. -W. Whang and J. Y. Lee: J. Electrochem. Soc. Vol. 144(1) (1997) pp.335-339.

Google Scholar

[6] Y. L. Huang, Y. Ma, R. Job, M. Scherff, W. R. Fahrner, H. G. Shi, D. S. Xue and M. -L. David: J. Electrochem. Soc. Vol. 152(9) (2005) p. C600-C604.

DOI: 10.1149/1.1984350

Google Scholar

[7] Y. Ma, R. Job, W. Düngen, Y. L. Huang, W. R. Fahrer, M. F. Beaufort, S. Rousselet and J. T. Horstmann: Appl. Phys. Lett. Vol. 86 (2005) 252109.

DOI: 10.1063/1.1953871

Google Scholar

[8] Liu CL, Ntsoenzok E, Vengurlekar A, Ashok S, Alquier D, Ruault MO and Dubois C: J. Vac. Sci. Tech. B Vol. 23 (2005) pp.990-994.

DOI: 10.1116/1.1897710

Google Scholar

[9] Liu CL, Ntsoenzok E, Barthe MF, Desgardin P, Ashok S, Vengurlekar A, Alquier D, Ruault MO: Gett. Def. Eng. Semi. Tech. Vol. 95-96 (2004) pp.307-312.

DOI: 10.4028/www.scientific.net/ssp.95-96.307

Google Scholar

[10] M. Nastasi, T. Höchbauer, J. -K. Lee, A. Misra, J. P. Hirth, M. Ridgway and T. Lafford: Appl. Phys. Lett. Vol. 86 (2005), p.154102.

DOI: 10.1063/1.1900309

Google Scholar

[11] S. Muto, S. Takeda and M. Hirata: Phil. Mag. A Vol. 72, No. 4 (1997) pp.1057-1074.

Google Scholar

[12] R. Job, M. -F. Beaufort, J. -F. Barbot, A.G. Ulyashin and W.R. Fahrner, Mat. Res. Soc. Symp. Proc. 719 (2002) 217-222.

Google Scholar