Effect of Grown-In Defects on the Structure of Oxygen Precipitates in Cz-Si Crystals with Different Diameter

Article Preview

Abstract:

IR-spectroscopy with computer analysis of the shape of the Si-O absorption band, electron microscopy, X-rays diffraction and measurements of unsteady photoconductivity timedecay under band-to band excitation were used to investigate the influence of defects in different diameter (40 – 300 mm) Si ingots on the oxygen precipitation due to two-stage annealing (750 оС + 1050 оС). It is shown that large size Cz-Si ingots have a relatively low concentration of electrically active micro-defects, containing small (0.06 – 0.1 μm) dislocation loops. During thermal treatments this leads to the formation of a low stressed oxide phase (SiO2) with an enhanced thermo-stability. The precipitates in small size ingots, however, contain distorted 4-fold rings of SiO4 tetrahedra.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

405-412

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tempelhoff, F. Spiegelberg, R. Gleichmann, D. Wruck. Phys. Stat. Sol. (a). Vol. 56 (1979), pp.213-223.

DOI: 10.1002/pssa.2210560123

Google Scholar

[2] B. Pajot, H.J. Stein, B. Cales, C. J. Naud. Electrochem. Soc. Vol. 132 (1985), pp.3034-3037.

DOI: 10.1149/1.2113717

Google Scholar

[3] K. Nakai, Y. Inoue, H. Yokota, et al. J. Appl. Phys. Vol. 89 (2001), pp.4301-4309.

Google Scholar

[4] A.A. Efremov, V.G. Litovchenko, A.V. Saricov, H. Richter, V. Akhmetov. Solid St. Phenom. Vol. 95 -96 (2004), pp.405-408.

Google Scholar

[5] I.P. Lisovskyy, V.G. Litovchenko, V.B. Lozinskii et al. Thin Solid Films. Vol. 213 (1992), pp.164-169.

Google Scholar

[6] I.P. Lisovskyy, V.G. Litovchenko, V.B. Lozinskii et al. J. Non-Cryst. Solids. Vol. 187 (1995), pp.91-95.

Google Scholar

[7] I.P. Lisovskyy. Ukr. J. phys. Vol. 42 (1997), pp.1260-1265.

Google Scholar

[8] J.G. Vinter, A. Davis, M.R. Saunders. J. J. Comput. -Aided Mol. Des., Vol. 1 (1987), pp.31-51.

Google Scholar

[9] V.T. Bublikh, K.D. Scherbachev. Crystallography. Vol. 42 (1997), pp.326-330.

Google Scholar

[10] V.A. Khrivoglaz: Diffraction of X-rays and thermal neutrons in non-ideal crystals (Naukova Dumka, Kiev 1983).

Google Scholar

[11] V.T. Bublikh, K.D. Scherbachev. Crystallography . Vol. 39 (1994), pp.1105-1111 (in Russian).

Google Scholar

[12] V.P. Kladko, L.I. Datsenko, J. Bak-Misiuk, S.I. Olikhovskii, V.F. Machulin, I.V. Prokopenko, V.B. Molodkin, Z.V. Maksimenko. J. Phys. D: Appl. Phys. Vol. 34 (2001), p. A87-A92.

DOI: 10.1088/0022-3727/34/10a/318

Google Scholar

[13] K. Ravey: Defects and impurities in semiconductor silicon (Мir, Moscow 1984).

Google Scholar

[14] V.G. Litovchenko. Semiconductor technique and microelectronics. Vol. 33 (1981), pp.3-17.

Google Scholar

[15] A. Usami, K. Okura, T. J. Maki. Phys. D: Appl. Phys., Vol. 10 (1977), p.63.

Google Scholar

[16] I.M. Greskov, B.V. Smirnov, S.P. Solovjov, et al Semiconductors. Vol. 12 (1978), pp.1879-1882.

Google Scholar

[17] A. Szekeres , A. Paneva, S. Alexandrova , I. Lisovskyy , V.G. Litovchenko, D. Mazunov. Vacuum. Vol. 69 (2003), pp.355-360.

DOI: 10.1016/s0042-207x(02)00358-5

Google Scholar

[18] A.G. Revesz. Phys. Stat. Sol. Vol. 57 (1980), pp.235-243.

Google Scholar

[19] J. Vanhellemont and C. Claeys. Appl. Phys. Vol. 62 (1987), pp.3960-3971.

Google Scholar