Evaluation of Surface Passivation Layers for Bulk Lifetime Estimation of High Resistivity Silicon for Radiation Detectors

Article Preview

Abstract:

In order to identify an appropriate low-temperature surface passivation that could be used for bulk lifetime estimation of high resistivity (HR) (> 1 k·cm) silicon for radiation detectors, different passivating layers were evaluated on n-type and p-type standard Czochralski (CZ), HR magnetic CZ and HR float zone (FZ) substrates. Minority carrier lifetime measurements were performed by means of a μW-PCD set-up. The results show that SiNx PECVD layers deposited at low temperatures (≤ 250°C) may be used to evaluate the impact of different processing steps and treatments on the substrate characteristics for radiation detectors. First results are obtained about a preliminary thermal treatment experiment to evaluate the thermal stability of the passivating layers, as well as the potential impact of the generation of thermal donors on minority carrier lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

431-436

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Fischer and W. Pschunder: Proc. 10 th Photovoltaics Specialists Conference (1974), p.404.

Google Scholar

[2] G. Lindström, M. Ahmed, S. Albergo, et al.: Nucl. Instrum. & Meth. A Vol. 466 (2001), p.308.

Google Scholar

[3] F. Shimura: Oxygen in Silicon (Academic Press, San Diego, 1994).

Google Scholar

[4] J.M. Rafí, E. Simoen, C. Claeys, et al.: J. Electrochem. Soc. Vol. 152 (2005), p. G16.

Google Scholar

[5] J. Härkönen, E. Tuominen, K. Lassila-Perini, et al. : Nucl. Instrum. & Meth. A Vol. 485 (2002), p.159.

Google Scholar

[6] M. Lozano, M. Ullán, C. Martínez, L. Fonseca, et al.: J. Electrochem. Soc. Vol. 151 (2004), p. G652.

Google Scholar

[7] G. Pellegrini, P. Roy, R. Bates, et al.: Nucl. Instrum. & Meth. A Vol. 487 (2002), p.19.

Google Scholar

[8] G. Pellegrini, M. Lozano, F. Campabadal, et al.: Nucl. Instrum. & Meth. A Vol. 563 (2006), p.70.

Google Scholar

[9] M.J. Kerr and A. Cuevas: Semicond. Sci. & Tech. Vol. 17 (2002), p.35.

Google Scholar

[10] Z. Chen, S. K. Pang, K. Yasutake and A. Rohatgi: J. Appl. Phys. Vol. 74 (1993) p.2856.

Google Scholar

[11] A.G. Aberlee and R. Hezel: Progr. in Photovoltaics: Res. & Appl. Vol. 5 (1997), p.29.

Google Scholar

[12] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota: Progr. in Photovoltaics: Res. & Appl. Vol. 8 (2000), p.503.

DOI: 10.1002/1099-159x(200009/10)8:5<503::aid-pip347>3.0.co;2-g

Google Scholar

[13] S. De Wolf, G. Agostinelli, H.F.W. Dekkers and J. Szlufcik: Acta Phys. Slov. Vol. 53 (2003), p.135.

Google Scholar

[14] I. Martín, M. Vetter, A. Orpella, et al.: Appl. Phys. Lett. Vol. 79 (2001), p.2199.

Google Scholar

[15] E. Yablonovitch, D.L. Allara, C.C. Chang, et al.: Phys. Rev. Lett. Vol. 57 (1986), p.249.

Google Scholar

[16] R. Lago-Aurrekoetxea, I. Tobías, C. del Cañizo, et al.: J. Electrochem. Soc. Vol. 148 (2001), p. G200.

Google Scholar

[17] A. Ulyashin, E. Simoen, L. Carnel, S. De Wolf, H. Dekkers, J.M. Rafí, G. Beaucarne J. Poortmans and C. Claeys: Proc. 8 th Int. Symp. High Purity Silicon. The Electrochem. Soc., PV 2004-05 (2004), p.334.

Google Scholar

[18] E. Simoen, C. Claeys, R. Job, et al.: Appl. Phys. Lett. Vol. 81 (2002), p.1842.

Google Scholar

[19] Y. L. Huang, E. Simoen, C. Claeys, et al.: Appl. Phys. Lett. Vol. 89 (2006), p.031911.

Google Scholar

[20] J.M. Rafí, L. Cardona-Safont, M. Zabala, F. Campabadal, G. Pellegrini and M. Lozano: To be published in Proc. Spanish Conference on Electron Devices CDE (2007).

DOI: 10.1109/sced.2007.383985

Google Scholar

[21] Semilab WT-1000 Wafer Tester User's Manual, Semilab Rt., Budapest, Hungary, (2005).

Google Scholar

[22] D.K. Schroder: Semiconductor Material and Device Characterization (Wiley, New York (2006).

Google Scholar

[23] J. Schmidt: IEEE Trans. Electron Dev. Vol. 46 (1999), p. (2018).

Google Scholar

[24] G. Pellegrini, J.M. Rafí, M. Ullán, et al.: Nucl. Instrum. & Meth. A Vol. 548 (2005), p.355.

Google Scholar

[25] M. Bruzzi, D. Menichelli, M. Scaringella, et al.: J. Appl. Phys. Vol. 99 (2006) p.093706.

Google Scholar

[26] C. Leguijt, P. Lölgen, J.A. Eikelboom, et al.: Solar Energy Mat. & Solar Cells Vol. 34 (1994), p.177.

Google Scholar

[27] A. Bentzen, A. Ulyashin, A. Suphellen, et al.: Proc. PVSEC (2005), p.316.

Google Scholar

[28] A.G. Ulyashin, A. Bentzen, S. Diplas, et al.: Proc. WCPEC-4 (2006), p.1354.

Google Scholar

[29] A. Usami, Y. Fujii and K. Morioka: J. Phys. D: Appl. Phys. Vol. 10 (1977) p.899.

Google Scholar